Design concepts for hot carrier-based detectors and energy converters in the near ultraviolet and infrared

Abstract. Semiconductor materials are well suited for power conversion when the incident photon energy is slightly larger than the bandgap energy of the semiconductor. However, for photons with energy significantly greater than the bandgap energy, power conversion efficiencies are low. Further, for photons with energy below the bandgap energy, the absence of absorption results in no power generation. Here, we describe photon detection and power conversion of both high- and low-energy photons using hot carrier effects. For the absorption of high-energy photons, excited electrons and holes have excess kinetic energy that is typically lost through thermalization processes between the carriers and the lattice. However, collection of hot carriers before thermalization allows for reduced power loss. Devices utilizing plasmonic nanostructures or simple three-layer stacks (transparent conductor–insulator–metal) can be used to generate and collect these hot carriers. Alternatively, hot carrier collection from sub-bandgap photons can be possible by forming a Schottky junction with an absorbing metal so that hot carriers generated in the metal can be injected across the semiconductor–metal interface. Such structures enable near-IR detection based on sub-bandgap photon absorption. Further, utilization and optimization of localized surface plasmon resonances can increase optical absorption and hot carrier generation (through plasmon decay). Combining these concepts, hot carrier generation and collection can be exploited over a large range of incident wavelengths spanning the UV, visible, and IR.

[1]  Naomi J. Halas,et al.  Photodetection with Active Optical Antennas , 2011, Science.

[2]  Volker J. Sorger,et al.  Plasmon lasers: coherent light source at molecular scales , 2013 .

[3]  W. Steen Absorption and Scattering of Light by Small Particles , 1999 .

[4]  H. Atwater,et al.  Plasmonic hot carrier dynamics in solid-state and chemical systems for energy conversion , 2016 .

[5]  Sarah R. Kurtz,et al.  A 27.3 % efficient Ga0.5 In0.5 P/GaAs tandem solar cell , 1990 .

[6]  Peter Nordlander,et al.  Plasmon-induced hot carriers in metallic nanoparticles. , 2014, ACS nano.

[7]  D. C. Law,et al.  Solar Cell Generations over 40% Efficiency , 2011 .

[8]  Andrey Klots,et al.  Hot Electron-Based Near-Infrared Photodetection Using Bilayer MoS2. , 2015, Nano letters.

[9]  J. Luther,et al.  Peak External Photocurrent Quantum Efficiency Exceeding 100% via MEG in a Quantum Dot Solar Cell , 2011, Science.

[10]  Federico Capasso,et al.  Beam engineering of quantum cascade lasers , 2012 .

[11]  Nathan S. Lewis,et al.  Solar energy conversion via hot electron internal photoemission in metallic nanostructures: Efficiency estimates , 2014 .

[12]  Q. Ma,et al.  Hot-carrier photocurrent effects at graphene–metal interfaces , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[13]  E. Sargent,et al.  Colloidal Quantum-Dot Photodetectors Exploiting Multiexciton Generation , 2009, Science.

[14]  Harry A Atwater,et al.  PlasMOStor: a metal-oxide-Si field effect plasmonic modulator. , 2009, Nano letters.

[15]  Gavin Conibeer,et al.  Investigation of theoretical efficiency limit of hot carriers solar cells with a bulk indium nitride absorber , 2010 .

[16]  R. Schaller,et al.  New aspects of carrier multiplication in semiconductor nanocrystals. , 2008, Accounts of chemical research.

[17]  A. Bouhelier,et al.  Dynamics, effciency and energy distribution of nonlinear plasmon-assisted generation of hot carriers , 2016, 1601.02779.

[18]  Harry A Atwater,et al.  Color imaging via nearest neighbor hole coupling in plasmonic color filters integrated onto a complementary metal-oxide semiconductor image sensor. , 2013, ACS nano.

[19]  M. Brongersma,et al.  An electrically-driven GaAs nanowire surface plasmon source. , 2012, Nano letters.

[20]  G. Stucky,et al.  Plasmonic photoanodes for solar water splitting with visible light. , 2012, Nano letters.

[21]  Barbara K. Hughes,et al.  Comparing multiple exciton generation in quantum dots to impact ionization in bulk semiconductors: implications for enhancement of solar energy conversion. , 2010, Nano letters.

[22]  Michael J. McClain,et al.  Aluminum Nanocrystals as a Plasmonic Photocatalyst for Hydrogen Dissociation. , 2016, Nano letters.

[23]  M. Noginov,et al.  Light-to-current and current-to-light coupling in plasmonic system , 2010, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[24]  V. Klimov,et al.  Apparent versus true carrier multiplication yields in semiconductor nanocrystals. , 2010, Nano letters.

[25]  Florian Libisch,et al.  Hot electrons do the impossible: plasmon-induced dissociation of H2 on Au. , 2013, Nano letters.

[26]  Malvin C. Teich,et al.  Internal photoemission mechanisms at interfaces between germanium and thin metal films , 1980 .

[27]  R F Oulton,et al.  Active nanoplasmonic metamaterials. , 2012, Nature materials.

[28]  Yoshitaka Okada,et al.  Can a Hot-Carrier Solar Cell also be an Efficient Up-converter? , 2015, IEEE Journal of Photovoltaics.

[29]  K. Catchpole,et al.  Plasmon-enhanced internal photoemission for photovoltaics: Theoretical efficiency limits , 2012 .

[30]  C. Clavero,et al.  Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices , 2014, Nature Photonics.

[31]  Charles Howard Henry,et al.  Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells , 1980 .

[32]  Andrea Alù,et al.  Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors. , 2004, Physical review letters.

[33]  Antonio Luque,et al.  Will we exceed 50% efficiency in photovoltaics? , 2011 .

[34]  P. Würfel,et al.  Solar energy conversion with hot electrons from impact ionisation , 1997 .

[35]  T. Motohiro,et al.  A hot-carrier solar cell with optical energy selective contacts , 2011 .

[36]  Andrea Alù,et al.  Tuning the scattering response of optical nanoantennas with nanocircuit loads , 2008 .

[37]  Gavin Conibeer,et al.  Selective energy contacts for hot carrier solar cells , 2008 .

[38]  D. Law,et al.  40% efficient metamorphic GaInP∕GaInAs∕Ge multijunction solar cells , 2007 .

[39]  Michael J. Naughton,et al.  Hot electron effect in nanoscopically thin photovoltaic junctions , 2009 .

[40]  M. Bonn,et al.  Carrier multiplication in bulk and nanocrystalline semiconductors: Mechanism, efficiency, and interest for solar cells , 2010 .

[41]  Gregory V Hartland,et al.  Optical studies of dynamics in noble metal nanostructures. , 2011, Chemical reviews.

[42]  H. Xin,et al.  Singular characteristics and unique chemical bond activation mechanisms of photocatalytic reactions on plasmonic nanostructures. , 2012, Nature materials.

[43]  Yimin Kang,et al.  Plasmonic Hot Electron Induced Structural Phase Transition in a MoS2 Monolayer , 2014, Advanced materials.

[44]  E Di Fabrizio,et al.  Hot-electron nanoscopy using adiabatic compression of surface plasmons. , 2013, Nature nanotechnology.

[45]  Merrielle Spain,et al.  Tunable color filters based on metal-insulator-metal resonators. , 2009, Nano letters.

[46]  J. Munday,et al.  Angle-independent hot carrier generation and collection using transparent conducting oxides. , 2015, Nano letters.

[47]  Mark L Brongersma,et al.  Hot-electron photodetection with a plasmonic nanostripe antenna. , 2014, Nano letters.

[48]  W. Warta,et al.  Solar cell efficiency tables (version 43) , 2014 .

[49]  Jeremy N. Munday,et al.  Materials for hot carrier plasmonics , 2015 .

[50]  S. Maier,et al.  Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters. , 2011, Chemical reviews.

[51]  Jennifer Stanfield,et al.  Selective prostate cancer thermal ablation with laser activated gold nanoshells. , 2008, The Journal of urology.

[52]  B. Parkinson,et al.  Multiple Exciton Collection in a Sensitized Photovoltaic System , 2010, Science.

[53]  Ravishankar Sundararaman,et al.  Nonradiative Plasmon Decay and Hot Carrier Dynamics: Effects of Phonons, Surfaces, and Geometry. , 2016, ACS nano.

[54]  Gavin Conibeer,et al.  Hot carrier solar cells operating under practical conditions , 2009 .

[55]  Ravishankar Sundararaman,et al.  Theoretical predictions for hot-carrier generation from surface plasmon decay , 2014, Nature Communications.

[56]  Mark W. Knight,et al.  Aluminum plasmonic nanoantennas. , 2012, Nano letters.

[57]  Sarah R. Kurtz,et al.  29.5%‐efficient GaInP/GaAs tandem solar cells , 1994 .

[58]  P. Hebert,et al.  III–V multijunction solar cells for concentrating photovoltaics , 2009 .

[59]  E. Aydil,et al.  Hot-Electron Transfer from Semiconductor Nanocrystals , 2010, Science.

[60]  F. Capasso,et al.  Polarization-Controlled Tunable Directional Coupling of Surface Plasmon Polaritons , 2013, Science.

[61]  Sarah R. Kurtz,et al.  High-efficiency GaInP∕GaAs∕InGaAs triple-junction solar cells grown inverted with a metamorphic bottom junction , 2007 .

[62]  Harry A. Atwater,et al.  Towards an optimized all lattice-matched InAlAs/InGaAsP/InGaAs multijunction solar cell with efficiency >50% , 2013 .

[63]  Raj Korde,et al.  Absolute silicon photodiodes for 160 nm to 254 nm photons , 1998 .

[64]  Jeffrey N. Anker,et al.  Biosensing with plasmonic nanosensors. , 2008, Nature materials.

[65]  Martin Moskovits,et al.  An autonomous photosynthetic device in which all charge carriers derive from surface plasmons. , 2013, Nature nanotechnology.

[66]  Pierre Berini,et al.  Surface plasmon–polariton amplifiers and lasers , 2011, Nature Photonics.

[67]  Peter Nordlander,et al.  Solar vapor generation enabled by nanoparticles. , 2013, ACS nano.

[68]  G. Konstantatos,et al.  Large-Area Plasmonic-Crystal–Hot-Electron-Based Photodetectors , 2015 .