Nnew: nearest neighbor expansion by weighting in image database retrieval

Various systems have been developed for supporting content-based image retrieval. Most systems make very strong assumptions in modeling users’ query concepts. However, since the information need of users can be very diverse, these assumptions may not always hold and hence can lead to poor search results. For instance, if a system assumes that the query-concept is convex but a user issues a disjunctive query, and vice versa, the search result cannot be satisfactory. In this study, we propose a method that can approximate more complex (non-convex and disjunctive) query concepts. Our method uses intelligent modeling and learning to increase query speed and accuracy. Empirical results show that our method converges consistently faster than some traditional approaches on different datasets.

[1]  Christos Faloutsos,et al.  FALCON: Feedback Adaptive Loop for Content-Based Retrieval , 2000, VLDB.

[2]  Anil K. Jain,et al.  A Rule Based Approach for Visual Pattern Inspection , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Petra Perner,et al.  An Architecture for a CBR Image Segmentation System , 1999, ICCBR.

[4]  Saed Sayad,et al.  An Intelligent Learning Machine , 2003 .

[5]  Ahmet M. Eskicioglu,et al.  Multidimensional image quality measure using singular value decomposition , 2003, IS&T/SPIE Electronic Imaging.

[6]  Ivan Marsic,et al.  Knowledge-based remote image processing and compression for efficient transmission , 1995 .

[7]  Stephen T. Balke,et al.  In-line Color Monitoring of Pigmented Polyolefins During Extrusion. I. Assessment , 1999 .

[8]  K. Macura,et al.  Computerized Case-Based Instructional System for Computed Tomography and Magnetic Resonance Imaging of Brain Tumors , 1994, Investigative radiology.

[9]  Z. Bojkovic Image quality estimation in subband coding techniques based on human visual system , 1996, Proceedings of International Conference on Communication Technology. ICCT '96.

[10]  Charles Elkan,et al.  Estimating the Accuracy of Learned Concepts , 1993, IJCAI.

[11]  Jacek Jarmulak,et al.  Case-Based Classification of Ultrasonic B-Scans: Case-Base Organisation and Case Retrieval , 1998, EWCBR.

[12]  Xin Li,et al.  Blind image quality assessment , 2002, Proceedings. International Conference on Image Processing.

[13]  Zhou Wang,et al.  No-reference perceptual quality assessment of JPEG compressed images , 2002, Proceedings. International Conference on Image Processing.

[14]  Christos Faloutsos,et al.  MindReader: Querying Databases Through Multiple Examples , 1998, VLDB.

[15]  Bülent Sankur,et al.  Statistical evaluation of image quality measures , 2002, J. Electronic Imaging.

[16]  D. Wienke,et al.  Adaptive resonance theory based neural network for supervised chemical pattern recognition (FuzzyARTMAP) Part 2: Classification of post-consumer plastics by remote NIR spectroscopy using an InGaAs diode array , 1996 .

[17]  Keh-Shih Chuang,et al.  A novel image quality index using Moran I statistics. , 2003, Physics in medicine and biology.

[18]  Nikhil R. Pal,et al.  A novel training scheme for multilayered perceptrons to realize proper generalization and incremental learning , 2003, IEEE Trans. Neural Networks.

[19]  Horst Bunke,et al.  An expert system for the selection and application of image processing subroutines , 1993 .

[20]  Manish H. Bharati,et al.  Multivariate image analysis for real-time process monitoring and control , 1997 .

[21]  R Kovacevic,et al.  On-line monitoring of the keyhole welding pool in variable polarity plasma arc welding , 2002 .

[22]  Deepak S. Turaga,et al.  No reference PSNR estimation for compressed pictures , 2002, Proceedings. International Conference on Image Processing.

[23]  L. Breiman,et al.  Submodel selection and evaluation in regression. The X-random case , 1992 .

[24]  Ron Kohavi,et al.  A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection , 1995, IJCAI.

[25]  K. Miyanami,et al.  On-line monitoring of granule growth in high shear granulation by an image processing system. , 2000, Chemical & pharmaceutical bulletin.

[26]  David Hinkle,et al.  Applying Case-Based Reasoning to Manufacturing , 1995, AI Mag..

[27]  Gert Cauwenberghs,et al.  Incremental and Decremental Support Vector Machine Learning , 2000, NIPS.

[28]  Lutgarde M. C. Buydens,et al.  Adaptive resonance theory based neural network for supervised chemical pattern recognition (FuzzyARTMAP) Part 1: Theory and network properties , 1996 .

[29]  F. Walters Sequential Simplex Optimization - An Update , 1999 .

[30]  Nico Karssemeijer,et al.  Normalization of local contrast in mammograms , 2000, IEEE Transactions on Medical Imaging.

[31]  Mohammed Yeasin,et al.  Development of an Automated Image Processing System for Kinematic Analysis of Human Gait , 2000, Real Time Imaging.

[32]  Mario Martín Muñoz On-line support vector machines for function approximation , 2002 .

[33]  Yoav Freund,et al.  A decision-theoretic generalization of on-line learning and an application to boosting , 1995, EuroCOLT.

[34]  Thomas J. Watson,et al.  An empirical study of the naive Bayes classifier , 2001 .

[35]  Shin Ishii,et al.  On-line EM Algorithm for the Normalized Gaussian Network , 2000, Neural Computation.

[36]  Hou-Kuan Huang,et al.  Incremental learning proximal support vector machine classifiers , 2002, Proceedings. International Conference on Machine Learning and Cybernetics.

[37]  M. B. Denton,et al.  Performance of the Super Modified Simplex , 1977 .

[38]  Casimir A. Kulikowski,et al.  Composition of Image Analysis Processes Through Object-Centered Hierarchical Planning , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[39]  Agnar Aamodt,et al.  A Two Layer Case-Based Reasoning Architecture for Medical Image Understanding , 1996, EWCBR.

[40]  Lutgarde M. C. Buydens,et al.  ADAPTIVE RESONANCE THEORY-BASED NEURAL NETWORKS - THE ART OF REAL-TIME PATTERN-RECOGNITION IN CHEMICAL PROCESS MONITORING , 1995 .

[41]  Christopher G. Atkeson,et al.  Constructive Incremental Learning from Only Local Information , 1998, Neural Computation.

[42]  David Leake,et al.  Case-Based Reasoning: Experiences, Lessons and Future Directions , 1996 .

[43]  Thomas Gahm,et al.  Automated microscopy in diagnostic histopathology: From image processing to automated reasoning , 1997, Int. J. Imaging Syst. Technol..

[44]  Keivan Torabi,et al.  Data mining for image analysis: in-line particle monitoring in polymer extrusion , 2002 .

[45]  Robert M. Hodgson,et al.  Texture Measures for Carpet Wear Assessment , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[46]  R. Buchholz,et al.  Morphological analysis of yeast cells using an automated image processing system. , 1996, Journal of biotechnology.

[47]  E. Peli In search of a contrast metric: Matching the perceived contrast of gabor patches at different phases and bandwidths , 1997, Vision Research.

[48]  Petra Perner CBR-Based Ultra Sonic Image Interpretation , 2000, EWCBR.

[49]  David McSherry Precision and Recall in Interactive Case-Based Reasoning , 2001, ICCBR.

[50]  Masashi Sugiyama,et al.  Incremental Construction of Projection Generalizing Neural Networks , 2002 .

[51]  L. S. Nelson,et al.  The Nelder-Mead Simplex Procedure for Function Minimization , 1975 .

[52]  Jin-Long An,et al.  An incremental learning algorithm for support vector machine , 2003, Proceedings of the 2003 International Conference on Machine Learning and Cybernetics (IEEE Cat. No.03EX693).

[53]  Günter Gauglitz,et al.  Growing neural networks for a multivariate calibration and variable selection of time-resolved measurements , 2003 .

[54]  Marinette Revenu,et al.  An Interactive Case-Based Reasoning System for the Development of Image Processing Applications , 1998, EWCBR.

[55]  Stefan Winkler,et al.  A no-reference perceptual blur metric , 2002, Proceedings. International Conference on Image Processing.

[56]  José Carlos Príncipe,et al.  Incremental backpropagation learning networks , 1996, IEEE Trans. Neural Networks.

[57]  Gerold Porenta,et al.  Feasibility analysis of a case-based reasoning system for automated detection of coronary heart disease from myocardial scintigrams , 1997, Artif. Intell. Medicine.

[58]  Robert Tibshirani,et al.  Discriminant Adaptive Nearest Neighbor Classification , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[59]  A. Vladár,et al.  Image sharpness measurement in the scanning electron-microscope--part III. , 2006, Scanning.

[60]  Alper Baykut,et al.  Real-time Defect Inspection of Textured Surfaces , 2000, Real Time Imaging.

[61]  Jorge E. Caviedes,et al.  No-reference sharpness metric based on local edge kurtosis , 2002, Proceedings. International Conference on Image Processing.

[62]  Petra Perner,et al.  Are Case-Based Reasoning and Dissimilarity-Based Classification Two Sides of the Same Coin? , 2001, MLDM.

[63]  Manabu Tanaka,et al.  Automated image processing for fractal analysis of fracture surface profiles in high-temperature materials , 2001 .

[64]  Steve A. Chien,et al.  Automating Image Processing for Scientific Data Analysis of a Large Image Database , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[65]  Marinette Revenu,et al.  CBR for the management and reuse of image-processing expertise: a conversational system , 1999 .

[66]  Kriengkrai Porkaew,et al.  Query refinement for multimedia similarity retrieval in MARS , 1999, MULTIMEDIA '99.

[67]  J. S. Ivey,et al.  Nelder-Mead simplex modifications for simulation optimization , 1996 .

[68]  Eric Persoon A Pipelined Image Analysis System Using Custom Integrated Circuits , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[69]  Marinette Revenu,et al.  Borg: A Knowledge-Based System for Automatic Generation of Image Processing Programs , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[70]  A. Agresti,et al.  Approximate is Better than “Exact” for Interval Estimation of Binomial Proportions , 1998 .

[71]  Stephen Grossberg,et al.  Fuzzy ARTMAP: A neural network architecture for incremental supervised learning of analog multidimensional maps , 1992, IEEE Trans. Neural Networks.

[72]  A. Bovik,et al.  A universal image quality index , 2002, IEEE Signal Processing Letters.

[73]  H. Iwase,et al.  An expert system for image processing , 1988, [1988] Proceedings. The Fourth Conference on Artificial Intelligence Applications.

[74]  Ahmet M. Eskicioglu,et al.  Quality measurement for monochrome compressed images in the past 25 years , 2000, 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100).

[75]  T. Tanaka,et al.  Knowledge acquisition in image processing expert system 'EXPLAIN' , 1988, Proceedings of the International Workshop on Artificial Intelligence for Industrial Applications.

[76]  Stephen T. Balke,et al.  In-line color monitoring of polymers during extrusion using a charge coupled device spectrometer: Color changeovers and residence time distributions , 2003 .

[77]  Jerome H. Friedman,et al.  Flexible Metric Nearest Neighbor Classification , 1994 .

[78]  Henk J. Busscher,et al.  Application of an artificial neural network in the enumeration of yeasts and bacteria adhering to solid substrata , 1998 .

[79]  Gert Cauwenberghs,et al.  SVM incremental learning, adaptation and optimization , 2003, Proceedings of the International Joint Conference on Neural Networks, 2003..

[80]  Wen Xu,et al.  Picture quality evaluation based on error segmentation , 1994, Other Conferences.

[81]  H Petropoulos,et al.  Automated T2 quantitation in neuropsychiatric lupus erythematosus: A marker of active disease , 1999, Journal of magnetic resonance imaging : JMRI.

[82]  Bin-Bin Peng,et al.  SVM-based incremental active learning for user adaptation for online graphics recognition system , 2002, Proceedings. International Conference on Machine Learning and Cybernetics.

[83]  Lorenzo Bruzzone,et al.  An incremental-learning neural network for the classification of remote-sensing images , 1999, Pattern Recognit. Lett..

[84]  Takashi Matsuyama Expert systems for image processing: Knowledge-based composition of image analysis processes , 1989, Comput. Vis. Graph. Image Process..

[85]  Petra Perner,et al.  Why Case-Based Reasoning Is Attractive for Image Interpretation , 2001, ICCBR.

[86]  M S Beksaç,et al.  An automated intelligent diagnostic system for the interpretation of umbilical artery Doppler velocimetry. , 1996, European journal of radiology.

[87]  Stefan Rüping,et al.  Incremental Learning with Support Vector Machines , 2001, ICDM.

[88]  Manish H. Bharati,et al.  Softwood Lumber Grading through On-line Multivariate Image Analysis Techniques , 2003 .

[89]  C. T. Kelley,et al.  Detection and Remediation of Stagnation in the Nelder--Mead Algorithm Using a Sufficient Decrease Condition , 1999, SIAM J. Optim..

[90]  Thomas S. Huang,et al.  Content-based image retrieval with relevance feedback in MARS , 1997, Proceedings of International Conference on Image Processing.

[91]  Ralph E. Jacobson,et al.  An Evaluation of Image Quality Metrics , 1995 .

[92]  David Zhang,et al.  Impulse noise detection and removal using fuzzy techniques , 1997 .

[93]  David Casasent,et al.  Automated image processing for grain boundary analysis. , 2003, Ultramicroscopy.

[94]  J. J. Rocchio,et al.  Relevance feedback in information retrieval , 1971 .

[95]  Sharad Mehrotra,et al.  Query reformulation for content based multimedia retrieval in MARS , 1999, Proceedings IEEE International Conference on Multimedia Computing and Systems.

[96]  J A Beliën,et al.  Fully automated microvessel counting and hot spot selection by image processing of whole tumour sections in invasive breast cancer. , 1999, Journal of clinical pathology.

[97]  Moamar Sayed Mouchaweh,et al.  Incremental learning in Fuzzy Pattern Matching , 2002, Fuzzy Sets Syst..

[98]  J. Macgregor,et al.  Digital Imaging for Online Monitoring and Control of Industrial Snack Food Processes , 2003 .

[99]  Agnar Aamodt,et al.  Case-Based Reasoning: Foundational Issues, Methodological Variations, and System Approaches , 1994, AI Commun..

[100]  D. Betteridge,et al.  Reflections on the modified simplex-I. , 1985, Talanta.

[101]  Masakazu Ejiri,et al.  An Automatic Wafer Inspection System Using Pipelined Image Processing Techniques , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[102]  Paul S. Fisher,et al.  Image quality measures and their performance , 1995, IEEE Trans. Commun..

[103]  Monique Thonnat,et al.  A knowledge-based approach to integration of image processing procedures , 1993 .

[104]  C. Figdor,et al.  An automated multi well cell track system to study leukocyte migration. , 2003, Journal of immunological methods.

[105]  Salvatore Rampone,et al.  Towards an incremental SVM for regression , 2000, Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium.

[106]  D. Betteridge,et al.  Reflections on the modified simplex-II. , 1985, Talanta.