Droplet Barcoding for Single-Cell Transcriptomics Applied to Embryonic Stem Cells

[1]  Evan Z. Macosko,et al.  Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets , 2015, Cell.

[2]  Michael B. Elowitz,et al.  Dynamic Heterogeneity and DNA Methylation in Embryonic Stem Cells , 2014, Molecular cell.

[3]  Alex A. Pollen,et al.  Low-coverage single-cell mRNA sequencing reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex , 2014, Nature Biotechnology.

[4]  H. Stunnenberg,et al.  Otx2 and Oct4 Drive Early Enhancer Activation during Embryonic Stem Cell Transition from Naive Pluripotency , 2014, Cell reports.

[5]  A. Oudenaarden,et al.  Validation of noise models for single-cell transcriptomics , 2014, Nature Methods.

[6]  M. Torres-Padilla,et al.  Transcription factor heterogeneity in pluripotent stem cells: a stochastic advantage , 2014, Development.

[7]  Aaron M. Streets,et al.  Microfluidic single-cell whole-transcriptome sequencing , 2014, Proceedings of the National Academy of Sciences.

[8]  Björn Usadel,et al.  Trimmomatic: a flexible trimmer for Illumina sequence data , 2014, Bioinform..

[9]  I. Amit,et al.  Massively Parallel Single-Cell RNA-Seq for Marker-Free Decomposition of Tissues into Cell Types , 2014, Science.

[10]  Gioele La Manno,et al.  Quantitative single-cell RNA-seq with unique molecular identifiers , 2013, Nature Methods.

[11]  Gabriel V. Markov,et al.  On the Origin and Evolutionary History of NANOG , 2014, PloS one.

[12]  Wolfgang Huber,et al.  Cell-to-cell expression variability followed by signal reinforcement progressively segregates early mouse lineages , 2013, Nature Cell Biology.

[13]  Åsa K. Björklund,et al.  Full-length RNA-seq from single cells using Smart-seq2 , 2014, Nature Protocols.

[14]  N. Neff,et al.  Quantitative assessment of single-cell RNA-sequencing methods , 2013, Nature Methods.

[15]  Aleksandra A. Kolodziejczyk,et al.  Accounting for technical noise in single-cell RNA-seq experiments , 2013, Nature Methods.

[16]  Ruiqiang Li,et al.  Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells , 2013, Nature Structural &Molecular Biology.

[17]  A. Abate,et al.  Ultrahigh-throughput Mammalian single-cell reverse-transcriptase polymerase chain reaction in microfluidic drops. , 2013, Analytical chemistry.

[18]  Sean C. Bendall,et al.  viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia , 2013, Nature Biotechnology.

[19]  D. Weitz,et al.  Single-cell analysis and sorting using droplet-based microfluidics , 2013, Nature Protocols.

[20]  Wange Lu,et al.  The interactomes of POU5F1 and SOX2 enhancers in human embryonic stem cells , 2013, Scientific Reports.

[21]  K. Shirahige,et al.  PRDM14 ensures naive pluripotency through dual regulation of signaling and epigenetic pathways in mouse embryonic stem cells. , 2013, Cell stem cell.

[22]  Patrick S. Stumpf,et al.  Nanog-dependent feedback loops regulate murine embryonic stem cell heterogeneity , 2012, Nature Cell Biology.

[23]  T. Hashimshony,et al.  CEL-Seq: single-cell RNA-Seq by multiplexed linear amplification. , 2012, Cell reports.

[24]  C. Hansen,et al.  Microfluidic single cell analysis: from promise to practice. , 2012, Current opinion in chemical biology.

[25]  D. Weitz,et al.  Droplet microfluidics for high-throughput biological assays. , 2012, Lab on a chip.

[26]  Joshua M Brickman,et al.  Gene expression heterogeneities in embryonic stem cell populations: origin and function. , 2011, Current opinion in cell biology.

[27]  G. Lahav,et al.  We are all individuals: causes and consequences of non-genetic heterogeneity in mammalian cells. , 2011, Current opinion in genetics & development.

[28]  Sean C. Bendall,et al.  Extracting a Cellular Hierarchy from High-dimensional Cytometry Data with SPADE , 2011, Nature Biotechnology.

[29]  H. Ng,et al.  Mapping the networks for pluripotency , 2011, Philosophical Transactions of the Royal Society B: Biological Sciences.

[30]  Hans Clevers,et al.  Strategies for Homeostatic Stem Cell Self-Renewal in Adult Tissues , 2011, Cell.

[31]  S. P. Fodor,et al.  Counting individual DNA molecules by the stochastic attachment of diverse labels , 2011, Proceedings of the National Academy of Sciences.

[32]  Alexei A. Sharov,et al.  Functional Heterogeneity of Embryonic Stem Cells Revealed through Translational Amplification of an Early Endodermal Transcript , 2010, PLoS biology.

[33]  Mikael Huss,et al.  Resolution of cell fate decisions revealed by single-cell gene expression analysis from zygote to blastocyst. , 2010, Developmental cell.

[34]  Sunia A Trauger,et al.  Metabolic oxidation regulates embryonic stem cell differentiation , 2010, Nature chemical biology.

[35]  A. Abate,et al.  Ultrahigh-throughput screening in drop-based microfluidics for directed evolution , 2010, Proceedings of the National Academy of Sciences.

[36]  Kit T. Rodolfa,et al.  Sox17 promotes differentiation in mouse embryonic stem cells by directly regulating extraembryonic gene expression and indirectly antagonizing self-renewal. , 2010, Genes & development.

[37]  Feng Q. He,et al.  Reverse engineering and verification of gene networks: principles, assumptions, and limitations of present methods and future perspectives. , 2009, Journal of biotechnology.

[38]  David A Weitz,et al.  Beating Poisson encapsulation statistics using close-packed ordering. , 2009, Lab on a chip.

[39]  Ryoichiro Kageyama,et al.  The cyclic gene Hes1 contributes to diverse differentiation responses of embryonic stem cells. , 2009, Genes & development.

[40]  W. Reik,et al.  Epigenetic dynamics of stem cells and cell lineage commitment: digging Waddington's canal , 2009, Nature Reviews Molecular Cell Biology.

[41]  D. Weitz,et al.  Fluorescence-activated droplet sorting (FADS): efficient microfluidic cell sorting based on enzymatic activity. , 2009, Lab on a chip.

[42]  C. Lim,et al.  Regulated Fluctuations in Nanog Expression Mediate Cell Fate Decisions in Embryonic Stem Cells , 2009, PLoS biology.

[43]  F. Tang,et al.  Dynamic equilibrium and heterogeneity of mouse pluripotent stem cells with distinct functional and epigenetic states. , 2008, Cell stem cell.

[44]  Claude Desplan,et al.  Stochasticity and Cell Fate , 2008, Science.

[45]  H. Niwa,et al.  Identification and characterization of subpopulations in undifferentiated ES cell culture , 2008, Development.

[46]  A. Lee,et al.  Droplet microfluidics. , 2008, Lab on a chip.

[47]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[48]  J. Nichols,et al.  Nanog safeguards pluripotency and mediates germline development , 2007, Nature.

[49]  Steve Horvath,et al.  Network neighborhood analysis with the multi-node topological overlap measure , 2007, Bioinform..

[50]  S. Dalton,et al.  Cell cycle control of embryonic stem cells , 2007, Stem Cell Reviews.

[51]  Kathleen F. Kerr,et al.  The External RNA Controls Consortium: a progress report , 2005, Nature Methods.

[52]  Johan Paulsson,et al.  Models of stochastic gene expression , 2005 .

[53]  G. Getz,et al.  Design principle of gene expression used by human stem cells: implication for pluripotency , 2004, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[54]  F. Wardle,et al.  Refinement of gene expression patterns in the early Xenopus embryo , 2004, Development.

[55]  Stephen Dalton,et al.  Cdk6–cyclin D3 activity in murine ES cells is resistant to inhibition by p16INK4a , 2004, Oncogene.

[56]  D. Melton,et al.  Single-cell transcript analysis of pancreas development. , 2003, Developmental cell.

[57]  Duncan Walker,et al.  Pluripotent cell division cycles are driven by ectopic Cdk2, cyclin A/E and E2F activities , 2002, Oncogene.

[58]  P. Swain,et al.  Intrinsic and extrinsic contributions to stochasticity in gene expression , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[59]  C. Ball,et al.  Identification of genes periodically expressed in the human cell cycle and their expression in tumors. , 2002, Molecular biology of the cell.

[60]  V. Plerou,et al.  Random matrix approach to cross correlations in financial data. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[61]  Balázs Kégl,et al.  Intrinsic Dimension Estimation Using Packing Numbers , 2002, NIPS.

[62]  S. Nishikawa,et al.  Progressive lineage analysis by cell sorting and culture identifies FLK1+VE-cadherin+ cells at a diverging point of endothelial and hemopoietic lineages. , 1998, Development.

[63]  Phillips,et al.  Antisense RNA Amplification: A Linear Amplification Method for Analyzing the mRNA Population from Single Living Cells , 1996, Methods.

[64]  T. Mak,et al.  Disruption of the mouse RBP-J kappa gene results in early embryonic death. , 1995, Development.

[65]  N. Stellwagen,et al.  Estimation of polyacrylamide gel pore size from Ferguson plots of normal and anomalously migrating DNA fragments. I. Gels containing 3 % N, N′‐methylenebisacrylamide , 1991, Electrophoresis.

[66]  P. Rousseeuw Silhouettes: a graphical aid to the interpretation and validation of cluster analysis , 1987 .

[67]  Vasek Chvátal,et al.  A Greedy Heuristic for the Set-Covering Problem , 1979, Math. Oper. Res..

[68]  V. Marčenko,et al.  DISTRIBUTION OF EIGENVALUES FOR SOME SETS OF RANDOM MATRICES , 1967 .

[69]  E. Lawler Covering Problems: Duality Relations and a New Method of Solution , 1966 .