Design of an Economical Counter Rotating Fan: Comparison of the Calculated and Measured Steady and Unsteady Results

Within the framework of the EU funded Project VITAL, SNECMA (Group Safran), as the work package leader, developed a counter rotating low-speed fan-concept for a high bypass ratio engine. The detailed aerodynamic and mechanical optimization of one blading version (CRTF2.b) was carried out at the German Aerospace Center (DLR), by applying one of the newest design methods featuring a multi-objective automatic optimization method based on an Evolutionary Algorithm [1].The final design goals were high efficiency, a sufficient stall margin and adequate acoustic performances for the given cycle parameters. The fan stage developed was tested in an anechoic test facility at CIAM in Moscow. The test routine included the measurement of the performance map based on total pressure and total temperature measurements at the inlet and the outlet of the test rig and acoustic measurement as well.The unsteady flow field of the low speed Contra-Rotating Turbo Fan has been measured with four hot-wire probes at different axial positions.In the evaluation the measured data are compared with high resolution CFD results. Special emphasis was given to the comparison of the radial distribution of total pressure and total temperature in the bypass channel, the comparison of the measured and the calculated fan maps and to the comparison of the hot-wire measurements with high resolution, unsteady CFD results. The tests and the URANS-results confirmed the design goals.Copyright © 2012 by ASME