On Quantum Advantage in Information Theoretic Single-Server PIR

In (single-server) Private Information Retrieval (PIR), a server holds a large database \({\mathtt {DB}}\) of size n, and a client holds an index \(i \in [n]\) and wishes to retrieve \({\mathtt {DB}}[i]\) without revealing i to the server. It is well known that information theoretic privacy even against an “honest but curious” server requires \(\varOmega (n)\) communication complexity. This is true even if quantum communication is allowed and is due to the ability of such an adversarial server to execute the protocol on a superposition of databases instead of on a specific database (“input purification attack”).

[1]  François Le Gall,et al.  Quantum Private Information Retrieval with Sublinear Communication Complexity , 2011, Theory Comput..

[2]  Dominic Mayers Unconditionally secure quantum bit commitment is impossible , 1997 .

[3]  M. Plenio,et al.  Entanglement-Assisted Local Manipulation of Pure Quantum States , 1999, quant-ph/9905071.

[4]  Andris Ambainis,et al.  Dense quantum coding and quantum finite automata , 2002, JACM.

[5]  Eyal Kushilevitz,et al.  Private information retrieval , 1998, JACM.

[6]  Craig Gentry,et al.  A fully homomorphic encryption scheme , 2009 .

[7]  Craig Gentry,et al.  Fully homomorphic encryption using ideal lattices , 2009, STOC '09.

[8]  P. Hayden,et al.  Universal entanglement transformations without communication , 2003 .

[9]  Oded Goldreich,et al.  Foundations of Cryptography: Volume 2, Basic Applications , 2004 .

[10]  Zeev Dvir,et al.  2-Server PIR with Sub-Polynomial Communication , 2014, STOC.

[11]  M. Klimesh Inequalities that Collectively Completely Characterize the Catalytic Majorization Relation , 2007, 0709.3680.

[12]  Hoi-Kwong Lo,et al.  Insecurity of Quantum Secure Computations , 1996, ArXiv.

[13]  Iordanis Kerenidis,et al.  Optimal Quantum Strong Coin Flipping , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[14]  Klim Efremenko,et al.  3-Query Locally Decodable Codes of Subexponential Length , 2008 .

[15]  Christian Schaffner,et al.  Quantum cryptography beyond quantum key distribution , 2015, Designs, Codes and Cryptography.

[16]  Jeroen van de Graaf,et al.  Cryptographic Distinguishability Measures for Quantum-Mechanical States , 1997, IEEE Trans. Inf. Theory.

[17]  Andreas J. Winter,et al.  Coding theorem and strong converse for quantum channels , 1999, IEEE Trans. Inf. Theory.

[18]  Ämin Baumeler,et al.  Quantum Private Information Retrieval has Linear Communication Complexity , 2013, Journal of Cryptology.

[19]  Scott Aaronson,et al.  Limitations of quantum advice and one-way communication , 2004, Proceedings. 19th IEEE Annual Conference on Computational Complexity, 2004..

[20]  Vinod Vaikuntanathan,et al.  Efficient Fully Homomorphic Encryption from (Standard) LWE , 2011, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.

[21]  C. Mochon Quantum weak coin flipping with arbitrarily small bias , 2007, 0711.4114.

[22]  Robert König,et al.  The Operational Meaning of Min- and Max-Entropy , 2008, IEEE Transactions on Information Theory.

[23]  Li Yu,et al.  Limitations on information theoretically secure quantum homomorphic encryption , 2014, ArXiv.

[24]  M. Wilde Quantum Information Theory: Noisy Quantum Shannon Theory , 2013 .

[25]  Stephen Wiesner,et al.  Conjugate coding , 1983, SIGA.

[26]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[27]  Seth Lloyd,et al.  Quantum private queries. , 2007, Physical review letters.

[28]  Silvio Micali,et al.  Computationally Private Information Retrieval with Polylogarithmic Communication , 1999, EUROCRYPT.

[29]  Iordanis Kerenidis,et al.  Information cost of quantum communication protocols , 2016, Quantum Inf. Comput..

[30]  Noam Nisan,et al.  Quantum circuits with mixed states , 1998, STOC '98.

[31]  R. Schumann Quantum Information Theory , 2000, quant-ph/0010060.

[32]  Iordanis Kerenidis,et al.  A Simpler Proof of the Existence of Quantum Weak Coin Flipping with Arbitrarily Small Bias , 2014, SIAM J. Comput..

[33]  Tomohiro Ogawa,et al.  Making Good Codes for Classical-Quantum Channel Coding via Quantum Hypothesis Testing , 2007, IEEE Transactions on Information Theory.

[34]  Ashwin Nayak,et al.  Optimal lower bounds for quantum automata and random access codes , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[35]  Louis Salvail,et al.  Secure Two-Party Quantum Evaluation of Unitaries against Specious Adversaries , 2010, CRYPTO.

[36]  Hoi-Kwong Lo,et al.  Is Quantum Bit Commitment Really Possible? , 1996, ArXiv.

[37]  Oded Goldreich,et al.  The Foundations of Cryptography - Volume 2: Basic Applications , 2001 .

[38]  Kai-Min Chung,et al.  Interactive Leakage Chain Rule for Quantum Min-entropy , 2019, 2019 IEEE International Symposium on Information Theory (ISIT).

[39]  Gus Gutoski,et al.  Toward a general theory of quantum games , 2006, STOC '07.

[40]  Jaikumar Radhakrishnan,et al.  A property of quantum relative entropy with an application to privacy in quantum communication , 2009, JACM.

[41]  S. Rajsbaum Foundations of Cryptography , 2014 .