The GABA Excitatory/Inhibitory Shift in Brain Maturation and Neurological Disorders

Ionic currents and the network-driven patterns they generate differ in immature and adult neurons: The developing brain is not a “small adult brain.” One of the most investigated examples is the developmentally regulated shift of actions of the transmitter GABA that inhibit adult neurons but excite immature ones because of an initially higher intracellular chloride concentration [Cl−]i, leading to depolarizing and often excitatory actions of GABA instead of hyperpolarizing and inhibitory actions. The levels of [Cl−]i are also highly labile, being readily altered transiently or persistently by enhanced episodes of activity in relation to synaptic plasticity or a variety of pathological conditions, including seizures and brain insults. Among the plethora of channels, transporters, and other devices involved in controlling [Cl−]i, two have emerged as playing a particularly important role: the chloride importer NKCC1 and the chloride exporter KCC2. Here, the authors stress the importance of determining how [Cl−]i is dynamically regulated and how this affects brain operation in health and disease. In a clinical perspective, agents that control [Cl−]i and reinstate inhibitory actions of GABA open novel therapeutic perspectives in many neurological disorders, including infantile epilepsies, autism spectrum disorders, and other developmental disorders.

[1]  J. Mendoza-Torreblanca,et al.  Ketogenic diet does not change NKCC1 and KCC2 expression in rat hippocampus , 2011, Epilepsy Research.

[2]  Michel A. Picardo,et al.  Pioneer GABA Cells Comprise a Subpopulation of Hub Neurons in the Developing Hippocampus , 2011, Neuron.

[3]  Chris J. McBain,et al.  A Blueprint for the Spatiotemporal Origins of Mouse Hippocampal Interneuron Diversity , 2011, The Journal of Neuroscience.

[4]  Enrico Cherubini,et al.  Alterations of GABAergic Signaling in Autism Spectrum Disorders , 2011, Neural plasticity.

[5]  Marat Minlebaev,et al.  Newborn Analgesia Mediated by Oxytocin during Delivery , 2011, Front. Cell. Neurosci..

[6]  Y. Ben-Ari,et al.  Neuronal chloride accumulation and excitatory GABA underlie aggravation of neonatal epileptiform activities by phenobarbital. , 2011, Brain : a journal of neurology.

[7]  S. Moss,et al.  NMDA receptor activity downregulates KCC2 resulting in depolarizing GABAA receptor mediated currents , 2011, Nature Neuroscience.

[8]  A. Kriegstein,et al.  Blocking early GABA depolarization with bumetanide results in permanent alterations in cortical circuits and sensorimotor gating deficits. , 2011, Cerebral cortex.

[9]  Michel A. Picardo,et al.  Depolarizing Actions of GABA in Immature Neurons Depend Neither on Ketone Bodies Nor on Pyruvate , 2011, The Journal of Neuroscience.

[10]  E. Cherubini,et al.  The Depolarizing Action of GABA Controls Early Network Activity in the Developing Hippocampus , 2011, Molecular Neurobiology.

[11]  F. Watrin,et al.  A single postnatal injection of oxytocin rescues the lethal feeding behaviour in mouse newborns deficient for the imprinted Magel2 gene. , 2010, Human molecular genetics.

[12]  R. Lifton,et al.  Phosphoregulation of the Na-K-2Cl and K-Cl cotransporters by the WNK kinases. , 2010, Biochimica et biophysica acta.

[13]  Y. Ben-Ari,et al.  The diuretic bumetanide decreases autistic behaviour in five infants treated during 3 months with no side effects , 2010, Acta paediatrica.

[14]  K. Holthoff,et al.  GABA Depolarizes Immature Neocortical Neurons in the Presence of the Ketone Body β-Hydroxybutyrate , 2010, The Journal of Neuroscience.

[15]  K. Kaila,et al.  Spontaneous Network Events Driven by Depolarizing GABA Action in Neonatal Hippocampal Slices are Not Attributable to Deficient Mitochondrial Energy Metabolism , 2010, The Journal of Neuroscience.

[16]  R. C. Estrada,et al.  Robust tonic GABA currents can inhibit cell firing in mouse newborn neocortical pyramidal cells , 2010, The European journal of neuroscience.

[17]  S. Moss,et al.  Tyrosine phosphorylation regulates the membrane trafficking of the potassium chloride co-transporter KCC2 , 2010, Molecular and Cellular Neuroscience.

[18]  K. Kaila,et al.  A Single Seizure Episode Leads to Rapid Functional Activation of KCC2 in the Neonatal Rat Hippocampus , 2010, The Journal of Neuroscience.

[19]  George J Augustine,et al.  Progressive NKCC1-Dependent Neuronal Chloride Accumulation during Neonatal Seizures , 2010, The Journal of Neuroscience.

[20]  Robert J. Morgan,et al.  Regulation of Fast-Spiking Basket Cell Synapses by the Chloride Channel ClC–2 , 2010, Nature Neuroscience.

[21]  T. Südhof,et al.  Neurexins Physically and Functionally Interact with GABAA Receptors , 2010, Neuron.

[22]  Rustem Khazipov,et al.  Frontiers in Cellular Neuroscience Cellular Neuroscience , 2022 .

[23]  J. Platel,et al.  Frontiers in Cellular Neuroscience Cellular Neuroscience , 2022 .

[24]  Daniel Cattaert,et al.  Down-regulation of the potassium-chloride cotransporter KCC2 contributes to spasticity after spinal cord injury , 2010, Nature Medicine.

[25]  Angela Sirigu,et al.  Promoting social behavior with oxytocin in high-functioning autism spectrum disorders , 2010, Proceedings of the National Academy of Sciences.

[26]  P. Bregestovski,et al.  Energy substrate availability as a determinant of neuronal resting potential, GABA signaling and spontaneous network activity in the neonatal cortex in vitro , 2010, Journal of neurochemistry.

[27]  E. Cherubini,et al.  In the Adult Hippocampus, Chronic Nerve Growth Factor Deprivation Shifts GABAergic Signaling from the Hyperpolarizing to the Depolarizing Direction , 2010, The Journal of Neuroscience.

[28]  Rosa Cossart,et al.  Early NMDA receptor‐driven waves of activity in the developing neocortex: physiological or pathological network oscillations? , 2010, The Journal of physiology.

[29]  Michel A. Picardo,et al.  GABAergic Hub Neurons Orchestrate Synchrony in Developing Hippocampal Networks , 2009, Science.

[30]  T. Südhof,et al.  Neuroligin-2 Deletion Selectively Decreases Inhibitory Synaptic Transmission Originating from Fast-Spiking but Not from Somatostatin-Positive Interneurons , 2009, The Journal of Neuroscience.

[31]  J. Gaiarsa,et al.  GABAB Receptor Activation Triggers BDNF Release and Promotes the Maturation of GABAergic Synapses , 2009, The Journal of Neuroscience.

[32]  C. Colangelo,et al.  Sites of Regulated Phosphorylation that Control K-Cl Cotransporter Activity , 2009, Cell.

[33]  R. Miledi,et al.  Microtransplantation of ligand-gated receptor-channels from fresh or frozen nervous tissue into Xenopus oocytes: A potent tool for expanding functional information , 2009, Progress in Neurobiology.

[34]  Majid H Mohajerani,et al.  At Immature Mossy-Fiber–CA3 Synapses, Correlated Presynaptic and Postsynaptic Activity Persistently Enhances GABA Release and Network Excitability via BDNF and cAMP-Dependent PKA , 2009, The Journal of Neuroscience.

[35]  H. Lagercrantz,et al.  Mode of delivery modulates physiological and behavioral responses to neonatal pain , 2009, Journal of Perinatology.

[36]  Rosa Cossart,et al.  Sequential Generation of Two Distinct Synapse-Driven Network Patterns in Developing Neocortex , 2008, The Journal of Neuroscience.

[37]  Maurizio Taglialatela,et al.  Low expression of Kv7/M channels facilitates intrinsic and network bursting in the developing rat hippocampus , 2008, The Journal of physiology.

[38]  Sylvain Rheims,et al.  Excitatory GABA in rodent developing neocortex in vitro. , 2008, Journal of neurophysiology.

[39]  K. Kaila,et al.  Posttraumatic GABAA-Mediated [Ca2+]i Increase Is Essential for the Induction of Brain-Derived Neurotrophic Factor-Dependent Survival of Mature Central Neurons , 2008, The Journal of Neuroscience.

[40]  T. Freund,et al.  Relationship between neuronal vulnerability and potassium-chloride cotransporter 2 immunoreactivity in hippocampus following transient forebrain ischemia , 2008, Neuroscience.

[41]  P. Froom,et al.  Neonatal seizures: dilemmas in workup and management. , 2008, Pediatric neurology.

[42]  M. Woodin,et al.  Coincident pre‐ and postsynaptic activity downregulates NKCC1 to hyperpolarize ECl during development , 2008, The European journal of neuroscience.

[43]  E. Delpire,et al.  NKCC1 and KCC2 prevent hyperexcitability in the mouse hippocampus , 2008, Epilepsy Research.

[44]  Juha Voipio,et al.  GABAergic Depolarization of the Axon Initial Segment in Cortical Principal Neurons Is Caused by the Na–K–2Cl Cotransporter NKCC1 , 2008, The Journal of Neuroscience.

[45]  K. Staley,et al.  Bumetanide enhances phenobarbital efficacy in a neonatal seizure model , 2008, Annals of neurology.

[46]  J. Wheless,et al.  Treatment of pediatric epilepsy: European expert opinion, 2007. , 2007, Epileptic disorders : international epilepsy journal with videotape.

[47]  J. A. Payne,et al.  Direct Protein Kinase C-dependent Phosphorylation Regulates the Cell Surface Stability and Activity of the Potassium Chloride Cotransporter KCC2* , 2007, Journal of Biological Chemistry.

[48]  R. Khazipov,et al.  GABA: a pioneer transmitter that excites immature neurons and generates primitive oscillations. , 2007, Physiological reviews.

[49]  R. Miles,et al.  Perturbed Chloride Homeostasis and GABAergic Signaling in Human Temporal Lobe Epilepsy , 2007, The Journal of Neuroscience.

[50]  H. Luhmann,et al.  Model-specific effects of bumetanide on epileptiform activity in the in-vitro intact hippocampus of the newborn mouse , 2007, Neuropharmacology.

[51]  E. Cherubini,et al.  Correlated network activity enhances synaptic efficacy via BDNF and the ERK pathway at immature CA3–CA1 connections in the hippocampus , 2007, Proceedings of the National Academy of Sciences.

[52]  I. Módy,et al.  The main source of ambient GABA responsible for tonic inhibition in the mouse hippocampus , 2007, The Journal of physiology.

[53]  E. Delpire,et al.  NKCC1 Phosphorylation Stimulates Neurite Growth of Injured Adult Sensory Neurons , 2007, The Journal of Neuroscience.

[54]  E. Cherubini,et al.  In the developing rat hippocampus a tonic GABAA‐mediated conductance selectively enhances the glutamatergic drive of principal cells , 2007, The Journal of physiology.

[55]  M. Poo,et al.  Excitatory GABA Action Is Essential for Morphological Maturation of Cortical Neurons In Vivo , 2007, The Journal of Neuroscience.

[56]  M. Walker,et al.  Increased NKCC1 expression in refractory human epilepsy , 2007, Epilepsy Research.

[57]  Rosa Cossart,et al.  A Parturition-Associated Nonsynaptic Coherent Activity Pattern in the Developing Hippocampus , 2007, Neuron.

[58]  R. Guillet,et al.  Seizure Recurrence and Developmental Disabilities After Neonatal Seizures: Outcomes Are Unrelated to Use of Phenobarbital Prophylaxis , 2007, Journal of child neurology.

[59]  M. Hirata,et al.  Early Changes in KCC2 Phosphorylation in Response to Neuronal Stress Result in Functional Downregulation , 2007, The Journal of Neuroscience.

[60]  M. Woodin,et al.  Role of activity-dependent regulation of neuronal chloride homeostasis in development , 2007, Current Opinion in Neurobiology.

[61]  R. Khazipov,et al.  Maternal Oxytocin Triggers a Transient Inhibitory Switch in GABA Signaling in the Fetal Brain During Delivery , 2006, Science.

[62]  C. McBain,et al.  GABAergic Input onto CA3 Hippocampal Interneurons Remains Shunting throughout Development , 2006, The Journal of Neuroscience.

[63]  D. Alessi,et al.  Functional interactions of the SPAK/OSR1 kinases with their upstream activator WNK1 and downstream substrate NKCC1. , 2006, The Biochemical journal.

[64]  Y. Ben-Ari,et al.  Glutamate Acting on AMPA But Not NMDA Receptors Modulates the Migration of Hippocampal Interneurons , 2006, The Journal of Neuroscience.

[65]  R. Miledi,et al.  Anomalous levels of Cl- transporters in the hippocampal subiculum from temporal lobe epilepsy patients make GABA excitatory. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[66]  Juha Voipio,et al.  Intrinsic bursting of immature CA3 pyramidal neurons and consequent giant depolarizing potentials are driven by a persistent Na+ current and terminated by a slow Ca2+‐activated K+ current , 2006, The European journal of neuroscience.

[67]  Doru Georg Margineanu,et al.  Differential effects of cation-chloride co-transport-blocking diuretics in a rat hippocampal slice model of epilepsy , 2006, Epilepsy Research.

[68]  E. Cherubini,et al.  GABAergic Signaling at Mossy Fiber Synapses in Neonatal Rat Hippocampus , 2006, The Journal of Neuroscience.

[69]  Ivan Cohen,et al.  Threshold Behavior in the Initiation of Hippocampal Population Bursts , 2006, Neuron.

[70]  E. Cherubini,et al.  Role of giant depolarizing potentials in shaping synaptic currents in the developing hippocampus. , 2006, Critical reviews in neurobiology.

[71]  Michel Le Van Quyen,et al.  Epileptogenic Actions of GABA and Fast Oscillations in the Developing Hippocampus , 2005, Neuron.

[72]  P. Colombo,et al.  NMDA receptors regulate developmental gap junction uncoupling via CREB signaling , 2005, Nature Neuroscience.

[73]  G. Fishell,et al.  The Temporal and Spatial Origins of Cortical Interneurons Predict Their Physiological Subtype , 2005, Neuron.

[74]  Jesse Rinehart,et al.  WNK3 modulates transport of Cl- in and out of cells: implications for control of cell volume and neuronal excitability. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[75]  T. Baram,et al.  Synchronized network activity in developing rat hippocampus involves regional hyperpolarization‐activated cyclic nucleotide‐gated (HCN) channel function , 2005, The European journal of neuroscience.

[76]  F. Jensen,et al.  NKCC1 transporter facilitates seizures in the developing brain , 2005, Nature Medicine.

[77]  E. Cherubini,et al.  Spontaneous recurrent network activity in organotypic rat hippocampal slices , 2005, The European journal of neuroscience.

[78]  Y. Ben-Ari,et al.  Endogenous Neurotrophins Are Required for the Induction of GABAergic Long-Term Potentiation in the Neonatal Rat Hippocampus , 2005, The Journal of Neuroscience.

[79]  I. Soltesz,et al.  Depolarizing GABA Acts on Intrinsically Bursting Pyramidal Neurons to Drive Giant Depolarizing Potentials in the Immature Hippocampus , 2005, The Journal of Neuroscience.

[80]  Y. Ben-Ari,et al.  A Noncanonical Release of GABA and Glutamate Modulates Neuronal Migration , 2005, The Journal of Neuroscience.

[81]  M. Farrant,et al.  Variations on an inhibitory theme: phasic and tonic activation of GABAA receptors , 2005, Nature Reviews Neuroscience.

[82]  I. Módy,et al.  Diversity of inhibitory neurotransmission through GABAA receptors , 2004, Trends in Neurosciences.

[83]  Y. Ben-Ari,et al.  Interneurons set the tune of developing networks , 2004, Trends in Neurosciences.

[84]  G. Buzsáki,et al.  Neuronal Oscillations in Cortical Networks , 2004, Science.

[85]  Hiroki Toyoda,et al.  Cl− uptake promoting depolarizing GABA actions in immature rat neocortical neurones is mediated by NKCC1 , 2004, The Journal of physiology.

[86]  Y. Yaari,et al.  KCNQ/M Channels Control Spike Afterdepolarization and Burst Generation in Hippocampal Neurons , 2004, The Journal of Neuroscience.

[87]  Enrico Cherubini,et al.  ‘Deaf, mute and whispering’ silent synapses: their role in synaptic plasticity , 2004, The Journal of physiology.

[88]  E. Cherubini,et al.  GABA-mediated giant depolarizing potentials as coincidence detectors for enhancing synaptic efficacy in the developing hippocampus. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[89]  J. Gaiarsa Plasticity of GABAergic synapses in the neonatal rat hippocampus , 2004 .

[90]  J. A. Payne,et al.  Cellular / Molecular Mechanism of Activity-Dependent Downregulation of the Neuron-Specific KCl Cotransporter KCC 2 , 2004 .

[91]  G. Holmes,et al.  Membrane potential of CA3 hippocampal pyramidal cells during postnatal development. , 2003, Journal of neurophysiology.

[92]  Y. Ben-Ari,et al.  Effects of Antiepileptic Drugs on Refractory Seizures in the Intact Immature Corticohippocampal Formation In Vitro , 2003, Epilepsia.

[93]  Yehezkel Ben-Ari,et al.  In vitro formation of a secondary epileptogenic mirror focus by interhippocampal propagation of seizures , 2003, Nature Neuroscience.

[94]  M. Poo,et al.  Coincident Pre- and Postsynaptic Activity Modifies GABAergic Synapses by Postsynaptic Changes in Cl− Transporter Activity , 2003, Neuron.

[95]  A. Bordey,et al.  GABA Depolarizes Neuronal Progenitors of the Postnatal Subventricular Zone Via GABAA Receptor Activation , 2003, The Journal of physiology.

[96]  Y. Ben-Ari,et al.  Interneurons are the source and the targets of the first synapses formed in the rat developing hippocampal circuit. , 2003, Cerebral cortex.

[97]  K. Staley,et al.  Excitatory Actions of Endogenously Released GABA Contribute to Initiation of Ictal Epileptiform Activity in the Developing Hippocampus , 2003, The Journal of Neuroscience.

[98]  Y. Ben-Ari,et al.  Paracrine Intercellular Communication by a Ca2+- and SNARE-Independent Release of GABA and Glutamate Prior to Synapse Formation , 2002, Neuron.

[99]  J. Voipio,et al.  BDNF-induced TrkB activation down-regulates the K+–Cl− cotransporter KCC2 and impairs neuronal Cl− extrusion , 2002, The Journal of cell biology.

[100]  R. Miles,et al.  On the Origin of Interictal Activity in Human Temporal Lobe Epilepsy in Vitro , 2002, Science.

[101]  Kohji Sato,et al.  Amygdala kindling induces upregulation of mRNA for NKCC1, a Na+, K+–2Cl− cotransporter, in the rat piriform cortex , 2002, Neuroscience Research.

[102]  Y. Ben-Ari Excitatory actions of gaba during development: the nature of the nurture , 2002, Nature Reviews Neuroscience.

[103]  Y. Ben-Ari,et al.  Early sequential formation of functional GABAA and glutamatergic synapses on CA1 interneurons of the rat foetal hippocampus , 2002, The European journal of neuroscience.

[104]  G. Buzsáki,et al.  Correlated Bursts of Activity in the Neonatal Hippocampus in Vivo , 2002, Science.

[105]  G B Boylan,et al.  Phenobarbitone, neonatal seizures, and video-EEG , 2002, Archives of disease in childhood. Fetal and neonatal edition.

[106]  I Khalilov,et al.  Early Development of Neuronal Activity in the Primate HippocampusIn Utero , 2001, The Journal of Neuroscience.

[107]  Y. Ben-Ari,et al.  ã Federation of European Neuroscience Societies Activity- and age-dependent GABAergic synaptic plasticity in the developing rat hippocampus , 2001 .

[108]  A. Konnerth,et al.  GABA‐mediated Ca2+ signalling in developing rat cerebellar Purkinje neurones , 2001, The Journal of physiology.

[109]  B. Forbush,et al.  Modulation of Ion Transport by Direct Targeting of Protein Phosphatase Type 1 to the Na-K-Cl Cotransporter* , 2001, The Journal of Biological Chemistry.

[110]  Y. Ben-Ari Developing networks play a similar melody , 2001, Trends in Neurosciences.

[111]  J. Barker,et al.  GABA Expression Dominates Neuronal Lineage Progression in the Embryonic Rat Neocortex and Facilitates Neurite Outgrowth via GABAA Autoreceptor/Cl− Channels , 2001, The Journal of Neuroscience.

[112]  S. Gasparini,et al.  Silent synapses in the developing hippocampus: lack of functional AMPA receptors or low probability of glutamate release? , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[113]  A. Kriegstein,et al.  An excitatory GABAergic plexus in developing neocortical layer 1. , 2000, Journal of neurophysiology.

[114]  O. Garaschuk,et al.  Large-scale oscillatory calcium waves in the immature cortex , 2000, Nature Neuroscience.

[115]  Yehezkel Ben-Ari,et al.  The Establishment of GABAergic and Glutamatergic Synapses on CA1 Pyramidal Neurons is Sequential and Correlates with the Development of the Apical Dendrite , 1999, The Journal of Neuroscience.

[116]  L Menendez de la Prida,et al.  Nonlinear transfer function encodes synchronization in a neural network from the mammalian brain. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[117]  Y. Ben-Ari,et al.  Long‐term potentiation of GABAergic synaptic transmission in neonatal rat hippocampus , 1999, The Journal of physiology.

[118]  Michael J. O'Donovan,et al.  Activity Patterns and Synaptic Organization of Ventrally Located Interneurons in the Embryonic Chick Spinal Cord , 1999, The Journal of Neuroscience.

[119]  E. Cherubini,et al.  Glutamate controls the induction of GABA-mediated giant depolarizing potentials through AMPA receptors in neonatal rat hippocampal slices. , 1999, Journal of neurophysiology.

[120]  J. A. Payne,et al.  The K+/Cl− co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation , 1999, Nature.

[121]  O. Garaschuk,et al.  Developmental profile and synaptic origin of early network oscillations in the CA1 region of rat neonatal hippocampus , 1998, The Journal of physiology.

[122]  X. Leinekugel,et al.  GABAA, NMDA and AMPA receptors: a developmentally regulated `ménage à trois' , 1997, Trends in Neurosciences.

[123]  X. Leinekugel,et al.  A Novel In Vitro Preparation: the Intact Hippocampal Formation , 1997, Neuron.

[124]  C. Shatz,et al.  Dynamic Processes Shape Spatiotemporal Properties of Retinal Waves , 1997, Neuron.

[125]  I Khalilov,et al.  Synchronization of GABAergic interneuronal network in CA3 subfield of neonatal rat hippocampal slices. , 1997, The Journal of physiology.

[126]  Xavier Leinekugel,et al.  Ca2+ Oscillations Mediated by the Synergistic Excitatory Actions of GABAA and NMDA Receptors in the Neonatal Hippocampus , 1997, Neuron.

[127]  A. Kriegstein,et al.  Excitatory GABA Responses in Embryonic and Neonatal Cortical Slices Demonstrated by Gramicidin Perforated-Patch Recordings and Calcium Imaging , 1996, The Journal of Neuroscience.

[128]  J. Gaiarsa,et al.  Spontaneous release of GABA activates GABAB receptors and controls network activity in the neonatal rat hippocampus. , 1996, Journal of neurophysiology.

[129]  A. N. van den Pol,et al.  Excitatory actions of GABA in developing rat hypothalamic neurones. , 1996, The Journal of physiology.

[130]  A. Konnerth,et al.  Long-term potentiation and functional synapse induction in developing hippocampus , 1996, Nature.

[131]  R. Yuste,et al.  Neuronal domains in developing neocortex: Mechanisms of coactivation , 1995, Neuron.

[132]  D. Reichling,et al.  Developmental Loss of GABA‐ and Glycine‐induced Depolarization and Ca2+ Transients in Embryonic Rat Dorsal Horn Neurons in Culture , 1994, The European journal of neuroscience.

[133]  P. Rakic,et al.  Modulation of neuronal migration by NMDA receptors. , 1993, Science.

[134]  Reginald G. Bickford,et al.  Atlas of Neonatal Electroencephalography , 1992 .

[135]  Rafael Yuste,et al.  Control of postsynaptic Ca2+ influx in developing neocortex by excitatory and inhibitory neurotransmitters , 1991, Neuron.

[136]  Y. Ben-Ari,et al.  Giant synaptic potentials in immature rat CA3 hippocampal neurones. , 1989, The Journal of physiology.

[137]  L. Maffei,et al.  Spontaneous impulse activity of rat retinal ganglion cells in prenatal life. , 1988, Science.

[138]  F. Marrosu,et al.  Paradoxical reactions elicited by diazepam in children with classic autism. , 1987, Functional neurology.

[139]  D. Prince,et al.  Changes in excitatory and inhibitory synaptic potentials leading to epileptogenic activity , 1980, Brain Research.

[140]  Y. Ben-Ari,et al.  Hippocampal seizures and failure of inhibition , 1979 .