Developing a transparent shading device as a daylighting system

A transparent shading device is developed as an alternative to opaque or translucent materials. The objectives are to create a new design of transparent blinds with improved daylighting performance and to simulate its daylighting performance. The application of a triangular cross-section for the slats and the use of clear plastic and a silver reflective coating as the materials for the new blinds utilize the principles of optics in this design. A case study analyses and compares the daylighting performance of the new transparent blinds, commercially available opaque blinds, and the previously patented transparent blinds. Results from a limited simulation of the three systems indicate the interior illuminance and daylighting performance are best for the new blinds. Un dispositif pare-soleil transparent a été mis au point comme alternative aux matériaux opaques ou translucides. Les objectifs sont de créer des stores transparents de conception nouvelle présentant des performances améliorées en éclairage naturel et de procéder à une simulation des performances de ce dispositif en éclairage naturel. Ce design fait appel aux principes d'optique dans l'application d'une section transversale triangulaire aux lamelles et dans l'utilisation d'un plastique transparent et d'un revêtement réfléchissant argenté comme matériaux de ces nouveaux stores. Une étude de cas analyse et compare les performances en éclairage naturel de ces nouveaux stores transparents, des stores opaques disponibles dans le commerce, et des stores transparents déjà brevetés. Les résultats d'une simulation limitée des trois systèmes indiquent que les performances concernant l’éclairement intérieur et l’éclairage naturel sont meilleures avec les nouveaux stores. Mots clés: technologie alternative; autonomie en lumière du jour; éclairage naturel; conception de facades; éclairement; optique; dispositif pare-soleil; simulation; éclairement naturel utile

[1]  John Reynolds,et al.  Mechanical and Electrical Equipment for Buildings , 1971 .

[2]  William D. Callister,et al.  Materials Science and Engineering: An Introduction , 1985 .

[3]  T. Inoue,et al.  The development of an optimal control system for window shading devices based on investigations in office buildings , 1988 .

[4]  E. Bilgen,et al.  Experimental study of thermal performance of automated venetian blind window systems , 1994 .

[5]  Ingrid Taylor,et al.  Intelligente Glasfassaden : Material, Anwendung, Gestaldung = Intelligent glass façades : material, practice, design , 1995 .

[6]  J. Klems,et al.  Solar Heat Gain Coefficient of Complex Fenestrations with a Venetian Blind for Differing Slat Tilt Angles , 1996 .

[7]  Francis Rubinstein,et al.  Developing a Dynamic Envelope/Lighting Control System with Field Measurements , 1996 .

[8]  P. Pfrommer,et al.  Solar radiation transport through slat-type blinds: a new model and its application for thermal simulation of buildings , 1996 .

[9]  Stephen Selkowitz,et al.  Advanced fenestration systems for improved daylight performance , 1998 .

[10]  Salvo Sciuto SOLAR CONTROL: An integrated approach to solar control techniques , 1998 .

[11]  Stephen Selkowitz,et al.  Thermal and daylighting performance of an automated venetian blind and lighting system in a full-scale private office , 1998 .

[12]  Volker Wittwer,et al.  Directionally selective dielectric structures for solar radiation control , 1998 .

[13]  M. Moeck,et al.  On Daylight Quality and Quantity and its Application to Advanced Daylight Systems , 1998 .

[14]  Robert Clear,et al.  Office Worker Response to an Automated Venetian Blind and Electric Lighting System: A Pilot Study , 1998 .

[15]  A. Beck,et al.  Making better use of natural light with a light-redirecting double-glazing system , 1999 .

[16]  Jean-Louis Scartezzini,et al.  Daylight in Buildings - A source book on daylighting systems and components , 2000 .

[17]  A. N. Tombazis,et al.  Design of passive solar buildings in urban areas , 2001 .

[18]  Christoph F. Reinhart,et al.  Validation of dynamic RADIANCE-based daylight simulations for a test office with external blinds , 2001 .

[19]  J. Rosenfeld,et al.  Optical and thermal performance of glazing with integral venetian blinds , 2001 .

[20]  Tilmann E. Kuhn,et al.  Evaluation of overheating protection with sun-shading systems , 2001 .

[21]  Antoine Guillemin,et al.  An innovative lighting controller integrated in a self-adaptive building control system , 2001 .

[22]  Athanasios Tzempelikos,et al.  A methodology for simulation of daylight room illuminance distribution and light dimming for a room with a controlled shading device , 2002 .

[23]  M. Kischkoweit-Lopin An overview of daylighting systems , 2002 .

[24]  Helmut Köster Dynamic Daylighting Architecture: Basics, Systems, Projects , 2004 .

[25]  Anca D. Galasiu,et al.  Impact of window blinds on daylight-linked dimming and automatic on/off lighting controls , 2004 .

[26]  Stephen Selkowitz,et al.  Integrating automated shading and smart glazings with daylight controls , 2004 .

[27]  John Mardaljevic,et al.  Dynamic Daylight Performance Metrics for Sustainable Building Design , 2006 .

[28]  John Mardaljevic,et al.  Useful daylight illuminances: A replacement for daylight factors , 2006 .

[29]  Anca D. Galasiu,et al.  Occupant preferences and satisfaction with the luminous environment and control systems in daylit offices: a literature review , 2006 .

[30]  J. Mardaljevic Examples of Climate-Based Daylight Modelling , 2006 .

[31]  Athanassios Tzempelikos,et al.  The impact of venetian blind geometry and tilt angle on view, direct light transmission and interior illuminance , 2008 .