Regional characteristics of the relationship between columnar AOD and surface PM2.5: Application of lidar aerosol extinction profiles over Baltimore–Washington Corridor during DISCOVER-AQ

[1]  A. Dell'Acqua,et al.  Annual cycle in co-located in situ, total-column, and height- resolved aerosol observations in the Po Valley (Italy): Implications for ground-level particulate matter mass concentration estimation from remote sensing , 2010 .

[2]  R. Penndorf The Vertical Distribution of Mie Particles in the Troposphere. , 1954 .

[3]  B. Holben,et al.  Validation of MODIS aerosol optical depth retrieval over land , 2002 .

[4]  James D. Spinhirne,et al.  Compact Eye Safe Lidar Systems , 1995 .

[5]  S. Christopher,et al.  Remote Sensing of Particulate Pollution from Space: Have We Reached the Promised Land? , 2009, Journal of the Air & Waste Management Association.

[6]  Laura Bianco,et al.  Convective Boundary Layer Depth: Improved Measurement by Doppler Radar Wind Profiler Using Fuzzy Logic Methods , 2002 .

[7]  Dan Chen,et al.  Improving the accuracy of daily satellite-derived ground-level fine aerosol concentration estimates for North America. , 2012, Environmental science & technology.

[8]  K. Demerjian,et al.  New York State Urban and Rural Measurements of Continuous PM2.5 Mass by FDMS, TEOM, and BAM , 2006, Journal of the Air & Waste Management Association.

[9]  J. Léon,et al.  Impact of the mixing boundary layer on the relationship between PM2.5 and aerosol optical thickness , 2010 .

[10]  James D. Spinhirne,et al.  Micro pulse lidar , 1993, IEEE Trans. Geosci. Remote. Sens..

[11]  Jen-Ping Chen,et al.  Interpreting aerosol lidar profiles to better estimate surface PM2.5 for columnar AOD measurements , 2013 .

[12]  Andrew D. Foster,et al.  Satellite Remote Sensing for Developing Time and Space Resolved Estimates of Ambient Particulate in Cleveland, OH , 2011, Aerosol science and technology : the journal of the American Association for Aerosol Research.

[13]  Basil W. Coutant,et al.  Qualitative and quantitative evaluation of MODIS satellite sensor data for regional and urban scale air quality , 2004 .

[14]  Jen-Ping Chen,et al.  Analysis of the relationship between MODIS aerosol optical depth and particulate matter from 2006 to 2008 , 2011 .

[15]  P. Gupta,et al.  Particulate matter air quality assessment using integrated surface, satellite, and meteorological products: Multiple regression approach , 2009 .

[16]  R. Koelemeijer,et al.  Comparison of spatial and temporal variations of aerosol optical thickness and particulate matter over Europe , 2006 .

[17]  A. Smirnov,et al.  AERONET-a federated instrument network and data archive for aerosol Characterization , 1998 .

[18]  Donald H. Lenschow,et al.  An Objective Method for Deriving Atmospheric Structure from Airborne Lidar Observations , 2000 .

[19]  W. Malm,et al.  Particulate sulfate ion concentration and SO 2 emission trends in the United States from the early 1990s through 2010 , 2012 .

[20]  Analysis of Aerosols , 1997, CHIMIA.

[21]  Ellsworth J. Welton,et al.  Improved boundary layer depth retrievals from MPLNET , 2013 .

[22]  Ellsworth J. Welton,et al.  Improved boundary layer depth retrievals from , 2013 .

[23]  B. Anderson,et al.  Airborne observations of aerosol extinction by in situ and remote‐sensing techniques: Evaluation of particle hygroscopicity , 2013 .

[24]  R. Ferrare,et al.  NASA LaRC airborne high spectral resolution lidar aerosol measurements during MILAGRO: observations and validation , 2009 .

[25]  Jassim A. Al-Saadi,et al.  Integrating lidar and satellite optical depth with ambient monitoring for 3-dimensional particulate characterization , 2006 .

[26]  Jay Gao,et al.  Monitoring of urban air pollution from MODIS aerosol data: effect of meteorological parameters , 2010 .

[27]  R. Ferrare,et al.  Aerosol classification using airborne High Spectral Resolution Lidar measurements – methodology and examples , 2011 .

[28]  Walter Di Nicolantonio,et al.  Particulate Matter at Surface: Northern Italy Monitoring Based on Satellite Remote Sensing, Meteorological Fields, and in-situ Samplings , 2009, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[29]  Oleg Dubovik,et al.  Global aerosol optical properties and application to Moderate Resolution Imaging Spectroradiometer aerosol retrieval over land , 2007 .

[30]  Alexis K.H. Lau,et al.  Analysis of aerosol vertical distribution and variability in Hong Kong , 2008 .

[31]  D. Chu,et al.  Improving National Air Quality Forecasts with Satellite Aerosol Observations , 2005 .

[32]  B. Holben,et al.  Global monitoring of air pollution over land from the Earth Observing System-Terra Moderate Resolution Imaging Spectroradiometer (MODIS) , 2003 .

[33]  Jun Wang,et al.  Intercomparison between satellite‐derived aerosol optical thickness and PM2.5 mass: Implications for air quality studies , 2003 .

[34]  C. Tomasi Features of the Scale Height for Particulate Extinction in Hazy Atmospheres. , 1982 .

[35]  Naresh Kumar,et al.  An empirical relationship between PM(2.5) and aerosol optical depth in Delhi Metropolitan. , 2007, Atmospheric environment.

[36]  G. Leeuw,et al.  Exploring the relation between aerosol optical depth and PM 2.5 at Cabauw, the Netherlands , 2008 .

[37]  Airborne High Spectral Resolution Lidar , 1999 .

[38]  Wayne C. Welch,et al.  Airborne high spectral resolution lidar for profiling aerosol optical properties. , 2008, Applied optics.

[39]  Marc Zebisch,et al.  PM10 remote sensing from geostationary SEVIRI and polar-orbiting MODIS sensors over the complex terrain of the European Alpine region , 2010 .

[40]  I. Brooks,et al.  Finding Boundary Layer Top: Application of a Wavelet Covariance Transform to Lidar Backscatter Profiles , 2003 .

[41]  B. Holben,et al.  A spatio‐temporal approach for global validation and analysis of MODIS aerosol products , 2002 .

[42]  Sundar A. Christopher,et al.  Seven year particulate matter air quality assessment from surface and satellite measurements , 2008 .