Density Estimators of Gaussian Type on Closed Riemannian Manifolds

We prove consistency results for two types of density estimators on a closed, connected Riemannian manifold under suitable regularity conditions. The convergence rates are consistent with those in Euclidean space as well as those obtained for a previously proposed class of kernel density estimators on closed Riemannian manifolds. The first estimator is the uniform mixture of heat kernels centered at each observation, a natural extension of the usual Gaussian estimator to Riemannian manifolds. The second is an approximate heat kernel (AHK) estimator that is motivated by more practical considerations, where observations occur on a manifold isometrically embedded in Euclidean space whose structure or heat kernel may not be completely known. We also provide some numerical evidence that the predicted convergence rate is attained for the AHK estimator.

[1]  Harrie Hendriks,et al.  Application of fast spherical Fourier transform to density estimation , 2003 .

[2]  P. Hall,et al.  Kernel density estimation with spherical data , 1987 .

[3]  Harrie Hendriks,et al.  Nonparametric Estimation of a Probability Density on a Riemannian Manifold Using Fourier Expansions , 1990 .

[4]  D. W. Scott,et al.  Multivariate Density Estimation, Theory, Practice and Visualization , 1992 .

[5]  S. Rosenberg The Laplacian on a Riemannian Manifold: The Laplacian on a Riemannian Manifold , 1997 .

[6]  Bernard W. Silverman,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[7]  Moo K. Chung Heat kernel smoothing on unit sphere , 2006, 3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro, 2006..

[8]  Nicholas I. Fisher,et al.  Statistical Analysis of Spherical Data. , 1987 .

[9]  Susan A. Murphy,et al.  Monographs on statistics and applied probability , 1990 .

[10]  Sheldon M. Ross,et al.  Introduction to Probability Models, Eighth Edition , 1972 .

[11]  Matthew P. Wand,et al.  Kernel Smoothing , 1995 .

[12]  Jay Jorgenson,et al.  The Ubiquitous Heat Kernel , 2006 .

[13]  Dirk P. Kroese,et al.  Kernel density estimation via diffusion , 2010, 1011.2602.

[14]  C. D. Kemp,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[15]  Dennis M. Healy,et al.  Spherical Deconvolution , 1998 .

[16]  A. V. D. Vaart,et al.  Asymptotic Statistics: Frontmatter , 1998 .

[17]  Mikhail Belkin,et al.  Towards a theoretical foundation for Laplacian-based manifold methods , 2005, J. Comput. Syst. Sci..

[18]  A. V. D. Vaart Asymptotic Statistics: Delta Method , 1998 .

[19]  J. Marron,et al.  SCALE SPACE VIEW OF CURVE ESTIMATION , 2000 .

[20]  Dennis M. Healy,et al.  An empirical Bayes approach to directional data and efficient computation on the sphere , 1996 .

[21]  Bruno Pelletier Kernel density estimation on Riemannian manifolds , 2005 .

[22]  Nicholas I. Fisher,et al.  Statistical Analysis of Spherical Data. , 1987 .

[23]  V. Lebedev,et al.  A QUADRATURE FORMULA FOR THE SPHERE OF THE 131ST ALGEBRAIC ORDER OF ACCURACY , 1999 .

[24]  P. Bérard Spectral Geometry: Direct and Inverse Problems , 1986 .

[25]  Sheldon M. Ross,et al.  Introduction to probability models , 1975 .

[26]  Graeme P. Penney,et al.  Estimating and resolving uncertainty in cardiac respiratory motion modelling , 2012, 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI).