Monte Carlo geometry processing

This paper explores how core problems in PDE-based geometry processing can be efficiently and reliably solved via grid-free Monte Carlo methods. Modern geometric algorithms often need to solve Poisson-like equations on geometrically intricate domains. Conventional methods most often mesh the domain, which is both challenging and expensive for geometry with fine details or imperfections (holes, self-intersections, etc.). In contrast, grid-free Monte Carlo methods avoid mesh generation entirely, and instead just evaluate closest point queries. They hence do not discretize space, time, nor even function spaces, and provide the exact solution (in expectation) even on extremely challenging models. More broadly, they share many benefits with Monte Carlo methods from photorealistic rendering: excellent scaling, trivial parallel implementation, view-dependent evaluation, and the ability to work with any kind of geometry (including implicit or procedural descriptions). We develop a complete "black box" solver that encompasses integration, variance reduction, and visualization, and explore how it can be used for various geometry processing tasks. In particular, we consider several fundamental linear elliptic PDEs with constant coefficients on solid regions of Rn. Overall we find that Monte Carlo methods significantly broaden the horizons of geometry processing, since they easily handle problems of size and complexity that are essentially hopeless for conventional methods.

[1]  Mark Meyer,et al.  Discrete Differential-Geometry Operators for Triangulated 2-Manifolds , 2002, VisMath.

[2]  Pradeep Sen,et al.  A machine learning approach for filtering Monte Carlo noise , 2015, ACM Trans. Graph..

[3]  Shinji Ogaki,et al.  Arnold , 2018, ACM Trans. Graph..

[4]  Antoine Lejay,et al.  A Random Walk on Rectangles Algorithm , 2006 .

[5]  Chi-Ok Hwang,et al.  Electrical capacitance of the unit cube , 2004 .

[6]  Daniele Panozzo,et al.  Decoupling simulation accuracy from mesh quality , 2018, ACM Trans. Graph..

[7]  Ingo Wald,et al.  Embree: a kernel framework for efficient CPU ray tracing , 2014, ACM Trans. Graph..

[8]  Jack F. Douglas,et al.  A first-passage algorithm for the hydrodynamic friction and diffusion-limited reaction rate of macromolecules , 1997 .

[9]  John C. Hart,et al.  Sphere tracing: a geometric method for the antialiased ray tracing of implicit surfaces , 1996, The Visual Computer.

[10]  Thomas A. Funkhouser,et al.  Biharmonic distance , 2010, TOGS.

[11]  Sylvain Maire,et al.  Monte Carlo approximations of the Neumann problem , 2012, Monte Carlo Methods Appl..

[12]  Wolfram Luther,et al.  Distance Calculation Between a Point and a NURBS Surface , 2000 .

[13]  Chi-Ok Hwang,et al.  On the rapid estimation of permeability for porous media using Brownian motion paths , 2000 .

[14]  Nigel J. Newton Variance Reduction for Simulated Diffusions , 1994, SIAM J. Appl. Math..

[15]  Martin Costabel,et al.  Principles of boundary element methods , 1987 .

[16]  Dan Givoli,et al.  A finite element method for domains with corners , 1992 .

[17]  Haroldo F. de Campos Velho,et al.  Helmholtz-Hodge decomposition and the analysis of 2D vector field ensembles , 2016, Comput. Graph..

[18]  Daniele Panozzo,et al.  Directional Field Synthesis, Design, and Processing , 2016, Comput. Graph. Forum.

[19]  Daniele Panozzo,et al.  Directional Field Synthesis, Design, and Processing , 2016, Comput. Graph. Forum.

[20]  James F. O'Brien,et al.  Interpolating and approximating implicit surfaces from polygon soup , 2005, SIGGRAPH 2005.

[21]  Chi-Ok Hwang,et al.  epsilon-Shell error analysis for "Walk On Spheres" algorithms , 2003, Math. Comput. Simul..

[22]  R. B. Iverson,et al.  A stochastic algorithm for high speed capacitance extraction in integrated circuits , 1992 .

[23]  T. Teichmann,et al.  Differential equations of mathematical physics , 1964 .

[24]  Steve Marschner,et al.  Matching Real Fabrics with Micro-Appearance Models , 2015, ACM Trans. Graph..

[25]  Paul E. Debevec Image-Based Lighting , 2002, IEEE Computer Graphics and Applications.

[26]  Keenan Crane,et al.  Globally optimal direction fields , 2013, ACM Trans. Graph..

[27]  Mariette Yvinec,et al.  Monte Carlo methods for linear and non-linear Poisson-Boltzmann equation , 2014, 1411.2304.

[28]  Gregory J. Ward,et al.  A ray tracing solution for diffuse interreflection , 2008, SIGGRAPH '08.

[29]  L. Hernquist,et al.  NUMERICAL CONVERGENCE IN SMOOTHED PARTICLE HYDRODYNAMICS , 2014, 1410.4222.

[30]  Timothy Sun,et al.  Fast multipole representation of diffusion curves and points , 2014, ACM Trans. Graph..

[31]  Keenan Crane,et al.  Stripe patterns on surfaces , 2015, ACM Trans. Graph..

[32]  Andreas Dietrich,et al.  OptiX: a general purpose ray tracing engine , 2010, SIGGRAPH 2010.

[33]  Boris Sch Ling The Boost C++ Libraries , 2011 .

[34]  Leonidas J. Guibas,et al.  Robust Monte Carlo methods for light transport simulation , 1997 .

[35]  Donald P. Greenberg,et al.  Modeling the interaction of light between diffuse surfaces , 1984, SIGGRAPH.

[36]  M. Kazhdan,et al.  Interactive and anisotropic geometry processing using the screened Poisson equation , 2011, SIGGRAPH 2011.

[37]  A. Zervos,et al.  Polynomial C1 shape functions on the triangle , 2013 .

[38]  Philippe Bekaert,et al.  Advanced Global Illumination, Second Edition , 2006 .

[39]  Luc Devroye,et al.  Sample-based non-uniform random variate generation , 1986, WSC '86.

[40]  Eitan Grinspun,et al.  Natural Boundary Conditions for Smoothing in Geometry Processing , 2017, ACM Trans. Graph..

[41]  Greg Humphreys,et al.  Physically Based Rendering: From Theory to Implementation , 2004 .

[42]  Szymon Rusinkiewicz,et al.  Efficient BRDF importance sampling using a factored representation , 2004, SIGGRAPH 2004.

[43]  Philippe Bekaert,et al.  Advanced global illumination , 2006 .

[44]  M. E. Muller Some Continuous Monte Carlo Methods for the Dirichlet Problem , 1956 .

[45]  Leonidas J. Guibas,et al.  Bidirectional Estimators for Light Transport , 1995 .

[46]  Daniele Panozzo,et al.  Tetrahedral meshing in the wild , 2018, ACM Trans. Graph..

[47]  Olga Sorkine-Hornung,et al.  Robust inside-outside segmentation using generalized winding numbers , 2013, ACM Trans. Graph..

[48]  Davoud Mirzaei,et al.  Analysis of moving least squares approximation revisited , 2015, J. Comput. Appl. Math..

[49]  Alec Jacobson,et al.  Fast winding numbers for soups and clouds , 2018, ACM Trans. Graph..

[50]  S. Axler,et al.  Harmonic Function Theory , 1992 .

[51]  TongYiying,et al.  Discrete multiscale vector field decomposition , 2003 .

[52]  Eitan Grinspun,et al.  A mixed finite element method with piecewise linear elements for the biharmonic equation on surfaces , 2019, ArXiv.

[53]  Yiying Tong,et al.  3D hodge decompositions of edge- and face-based vector fields , 2019, ACM Trans. Graph..

[54]  Mark Braverman,et al.  The rate of convergence of the Walk on Spheres Algorithm , 2008, 0810.3343.

[55]  Eugenio Oñate,et al.  The meshless finite element method , 2003 .

[56]  Daniele Panozzo,et al.  Fast tetrahedral meshing in the wild , 2019, ACM Trans. Graph..

[57]  Thomas E. Booth Regional Monte Carlo solution of elliptic partial differential equations , 1981 .

[58]  Nikolai A. Simonov,et al.  Monte Carlo Methods for Calculating Some Physical Properties of Large Molecules , 2004, SIAM J. Sci. Comput..

[59]  Yves D. Willems,et al.  Bi-directional path tracing , 1993 .

[60]  Robert Bridson,et al.  Fast Poisson disk sampling in arbitrary dimensions , 2007, SIGGRAPH '07.

[61]  Marco Attene,et al.  Polygon mesh repairing: An application perspective , 2013, CSUR.

[62]  É. Pardoux,et al.  Forward-backward stochastic differential equations and quasilinear parabolic PDEs , 1999 .

[63]  Desmond J. Higham,et al.  An Algorithmic Introduction to Numerical Simulation of Stochastic Differential Equations , 2001, SIAM Rev..

[64]  G. Mikhailov,et al.  Solution of the dirichlet problem for the equation Δu-cu = −q by a model of “walks on spheres” , 1969 .

[65]  Kun Zhou,et al.  Mesh editing with poisson-based gradient field manipulation , 2004, SIGGRAPH 2004.

[66]  Jaakko Lehtinen,et al.  Recent Advances in Adaptive Sampling and Reconstruction for Monte Carlo Rendering , 2015, Comput. Graph. Forum.

[67]  P. Kloeden,et al.  Numerical Solution of Stochastic Differential Equations , 1992 .

[68]  Jean-Claude Paul,et al.  Improved Algebraic Algorithm on Point projection for B´eziercurves , 2007 .

[69]  A. Requicha CONSTRUCTIVE SOLID GEOMETRY , 1977 .

[70]  S. Kakutani 143. Two-dimensional Brownian Motion and Harmonic Functions , 1944 .

[71]  Huafeng Liu,et al.  Meshfree Particle Methods , 2004 .

[72]  Braxton Osting,et al.  An Approach to Quad Meshing Based on Harmonic Cross-Valued Maps and the Ginzburg-Landau Theory , 2017, SIAM J. Sci. Comput..

[73]  Daniele Panozzo,et al.  TriWild , 2019, ACM Trans. Graph..

[74]  Jovan Popović,et al.  Bounded biharmonic weights for real-time deformation , 2011, SIGGRAPH 2011.

[75]  Leonidas J. Guibas,et al.  A concise and provably informative multi-scale signature based on heat diffusion , 2009 .

[76]  Scott D. Roth,et al.  Ray casting for modeling solids , 1982, Comput. Graph. Image Process..

[77]  Marco Avellaneda,et al.  Reducing variance in the numerical solution of BSDEs , 2013 .

[78]  L. A. Romero,et al.  A Monte Carlo method for Poisson's equation , 1990 .

[79]  Eitan Grinspun,et al.  Mesh arrangements for solid geometry , 2016, ACM Trans. Graph..

[80]  Pascal Barla,et al.  Diffusion curves: a vector representation for smooth-shaded images , 2008, SIGGRAPH 2008.