Do Multi-year Applications of Bacillus thuringiensis subsp. israelensis for Control of Mosquito Larvae Affect the Abundance of B. cereus Group Populations in Riparian Wetland Soils?

[1]  R. Frutos,et al.  Insect pathogens as biological control agents: Back to the future. , 2015, Journal of invertebrate pathology.

[2]  I. Sundh,et al.  Chromosome-Directed PCR-Based Detection and Quantification of Bacillus cereus Group Members with Focus on B. thuringiensis Serovar israelensis Active against Nematoceran Larvae , 2015, Applied and Environmental Microbiology.

[3]  L. Després,et al.  Persistence and Recycling of Bioinsecticidal Bacillus thuringiensis subsp. israelensis Spores in Contrasting Environments: Evidence from Field Monitoring and Laboratory Experiments , 2014, Microbial Ecology.

[4]  M. Uyttendaele,et al.  Diversity of Bacillus cereus group strains is reflected in their broad range of pathogenicity and diverse ecological lifestyles. , 2013, FEMS microbiology ecology.

[5]  L. Després,et al.  Fate of Bacillus thuringiensis subsp. israelensis in the Field: Evidence for Spore Recycling and Differential Persistence of Toxins in Leaf Litter , 2012, Applied and Environmental Microbiology.

[6]  John Sibert,et al.  AD Model Builder: using automatic differentiation for statistical inference of highly parameterized complex nonlinear models , 2012, Optim. Methods Softw..

[7]  F. Widmer,et al.  A PCR-based tool for cultivation-independent detection and quantification of Metarhizium clade 1. , 2011, Journal of invertebrate pathology.

[8]  S. Gill,et al.  Bacillus thuringiensis: A story of a successful bioinsecticide. , 2011, Insect biochemistry and molecular biology.

[9]  M. Tonolla,et al.  Distribution of Bacillus thuringiensis subsp. israelensis in Soil of a Swiss Wetland Reserve after 22 Years of Mosquito Control , 2011, Applied and Environmental Microbiology.

[10]  William N. Venables,et al.  Modern Applied Statistics with S , 2010 .

[11]  Sanford Weisberg,et al.  An R Companion to Applied Regression , 2010 .

[12]  M. Tonolla,et al.  A real‐time PCR method to quantify spores carrying the Bacillus thuringiensis var. israelensis cry4Aa and cry4Ba genes in soil , 2010, Journal of applied microbiology.

[13]  F. Donnarumma,et al.  Potential gene exchange between Bacillus thuringiensis subsp. kurstaki and Bacillus spp. in soil in situ , 2010 .

[14]  B. Raymond,et al.  Bacillus thuringiensis: an impotent pathogen? , 2010, Trends in microbiology.

[15]  F. Widmer,et al.  A generally applicable assay for the quantification of inhibitory effects on PCR. , 2009, Journal of microbiological methods.

[16]  E. Petersson,et al.  Production of wetland Chironomidae (Diptera) and the effects of using Bacillus thuringiensis israelensis for mosquito control , 2009, Bulletin of Entomological Research.

[17]  O. M. N. Arantes,et al.  Biology and taxonomy of Bacillus cereus, Bacillus anthracis, and Bacillus thuringiensis. , 2007, Canadian journal of microbiology.

[18]  S. Boyer,et al.  Differential sensitivity to Bacillus thuringiensis var. Israelensis and temephos in field mosquito populations of Ochlerotatus cataphylla (diptera: Culicidae): Toward resistance? , 2007, Environmental toxicology and chemistry.

[19]  M. Tonolla,et al.  Molecular identification of Bacillus thuringiensis var. israelensis to trace its fate after application as a biological insecticide in wetland ecosystems , 2006, Letters in applied microbiology.

[20]  David A Rasko,et al.  Genomics of the Bacillus cereus group of organisms. , 2005, FEMS microbiology reviews.

[21]  J. Ravel,et al.  Genomics of the group of organisms , 2005 .

[22]  Z. Hongyu,et al.  Susceptibility of Field Populations of Anopheles sinensis (Diptera: Culicidae) to Bacillus thuringiensis subsp. israelensis , 2004 .

[23]  B. Statzner,et al.  Freshwater ecology and biodiversity in the tropics: what did we learn from 30 years of onchocerciasis control and the associated biomonitoring of West African rivers? , 2003, Hydrobiologia.

[24]  Christina Gloeckner,et al.  Modern Applied Statistics With S , 2003 .

[25]  N. Hendriksen,et al.  Long-term survival and germination of Bacillus thuringiensis var. kurstaki in a field trial. , 2002, Canadian journal of microbiology.

[26]  N. Becker Microbial control of mosquitoes: management of the upper rhine mosquito population as a model programme. , 1997, Parasitology today.

[27]  A. Lövgren,et al.  Release of Bacillus thuringiensis subsp. israelensis in Swedish Soil , 1997 .

[28]  Phyllis A. W. Martin,et al.  Selective Process for Efficient Isolation of Soil Bacillus spp , 1987, Applied and environmental microbiology.

[29]  Y. Nishimoto,et al.  Formation of Crystalline δ-Endotoxin or Poly-β-Hydroxybutyric Acid Granules by Asporogenous Mutants of Bacillus thuringiensis , 1982 .

[30]  N. Hendriksen The Two Lives of Bacillus thuringiensis: Response to Ruan et al. and Loguercio and Argôlo-Filho. , 2016, Trends in microbiology.

[31]  E. Kandeler,et al.  Soil Organisms and Their Habitat , 2016 .

[32]  M. Schäfer,et al.  Efficiency of Bti-based floodwater mosquito control in Sweden – four examples , 2014 .

[33]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[34]  A. Bishop,et al.  Recovery of Bacillus thuringiensis in vegetative form from the phylloplane of clover (Trifolium hybridum) during a growing season. , 2007, Journal of invertebrate pathology.

[35]  L. Lacey BACILLUS THURINGIENSIS SEROVARIETY ISRAELENSIS AND BACILLUS SPHAERICUS FOR MOSQUITO CONTROL , 2007, Journal of the American Mosquito Control Association.

[36]  Y. Nishimoto,et al.  Formation of Crystalline delta-Endotoxin or Poly-beta-Hydroxybutyric Acid Granules by Asporogenous Mutants of Bacillus thuringiensis. , 1982, Applied and environmental microbiology.