Large-scale sequencing identifies multiple genes and rare variants associated with Crohn’s disease susceptibility

Noor B. Dawany | Judy H. Cho | David T. Okou | H. Ostrer | M. Rivas | S. Gabriel | M. Daly | J. Rioux | J. Barrett | M. Parkes | N. Prescott | J. Mansfield | T. Ahmad | P. Moayyedi | D. Cutler | M. Silverberg | A. Bitton | T. Ge | J. Kelsen | A. Palotie | R. Duerr | S. Brant | L. Datta | L. Schumm | M. Devoto | M. Mni | D. Franchimont | S. Vermeire | C. Anderson | M. Georges | S. Dodge | A. Ananthakrishnan | M. Voskuil | M. Hiltunen | C. Stevens | V. Iyer | M. Laudes | B. Kirschner | C. Bernstein | H. Sokol | B. Sands | R. Weersma | I. Cleynen | P. Goyette | T. Haritunians | S. Kugathasan | C. Ponsioen | P. Saavalainen | J. Lewis | A. Pulver | M. Solomonson | Hailiang Huang | D. Graham | C. Lamb | D. Rice | G. Heap | A. Simmons | H. Uhlig | N. Barzilai | G. Atzmon | Nikolas Pontikos | S. May | A. Segal | R. Sartor | S. Rahmouni | E. Hämäläinen | J. McCauley | A. Baras | E. Ellinghaus | A. Chan | B. Oldenburg | M. Pierik | K. Kontula | R. Newberry | S. Sheikh | D. Turner | P. Seksik | L. Beaugerie | J. Cosnes | I. Peter | M. Abreu | R. Xavier | M. Allez | S. Verstockt | Benjamin Glaser | D. McGovern | A. E. van der Meulen | S. Targan | D. Okou | A. Levine | Ashley Beecham | E. Schiff | W. Faubion | A. Daly | L. Fachal | J. Pekow | H. Khalili | B. Bokemeyer | S. Goerg | H. Winter | C. Jalas | E. Louis | M. Giri | J. Kupcinskas | J. Koskela | J. Horowitz | Sirimon O-Charoen | A. Sazonovs | E. Mengesha | Ashley H Beecham | B. Avila | M. Farkkila | Dylan Sun | G. Venkataraman | A. Franke | K. Gettler | J. Paquette | O. Damas | Manuel A. R. Ferreira | M. Hoeppner | S. Schreiber | H. Somineni | C. J. Moran | Manuel A R Ferreira | C. Liefferinckx | Kai Yuan | D. Chung | P. Irving | C. Lévesque | B. Loescher | R. Shawky | Jurgita Skeiceviciene | J. Young | Hari Somineni | K. Yuan | J. Kupčinskas | B. Glaser | Judy H. Cho | Sandra May | M. Ferreira | L. P. Schumm | Souad Rahmouni

[1]  Judy H. Cho,et al.  Serum Analyte Profiles Associated With Crohn's Disease and Disease Location. , 2021, Inflammatory bowel diseases.

[2]  A. Vetuschi,et al.  The Charming World of the Extracellular Matrix: A Dynamic and Protective Network of the Intestinal Wall , 2021, Frontiers in Medicine.

[3]  M. Lahiri,et al.  Prolonged Exposure to Platelet Activating Factor Transforms Breast Epithelial Cells , 2021, Frontiers in Genetics.

[4]  O. Schilling,et al.  EPB41L5 controls podocyte extracellular matrix assembly by adhesome-dependent force transmission. , 2021, Cell reports.

[5]  E. McDonagh,et al.  Open Targets Platform: supporting systematic drug–target identification and prioritisation , 2020, Nucleic Acids Res..

[6]  A. Regev,et al.  QRICH1 dictates the outcome of ER stress through transcriptional control of proteostasis , 2021, Science.

[7]  M. Daly,et al.  A missense variant in SLC39A8 confers risk for Crohn’s disease by disrupting manganese homeostasis and intestinal barrier integrity , 2020, Proceedings of the National Academy of Sciences.

[8]  Alexander E. Lopez,et al.  Exome sequencing and characterization of 49,960 individuals in the UK Biobank , 2020, Nature.

[9]  D. McGovern,et al.  Pleiotropic ZIP8 A391T implicates abnormal manganese homeostasis in complex human disease , 2020, JCI insight.

[10]  G. Kollias,et al.  The mesenchymal context in inflammation, immunity and cancer , 2020, Nature Immunology.

[11]  N. Field,et al.  Incidence and prevalence of inflammatory bowel disease in UK primary care: a population-based cohort study , 2020, BMJ Open.

[12]  S. Vermeire,et al.  Neutrophilic HGF-MET signaling exacerbates intestinal inflammation. , 2020, Journal of Crohn's & colitis.

[13]  TAGAP instructs Th17 differentiation by bridging Dectin activation to EPHB2 signaling in innate antifungal response , 2020, Nature Communications.

[14]  K. McCoy,et al.  Immunological roles of intestinal mesenchymal cells , 2020, Immunology.

[15]  J. Kuemmerle,et al.  The fate of myofibroblasts during the development of fibrosis in Crohn's disease , 2020, Journal of digestive diseases.

[16]  C. Gieger,et al.  Protein-coding variants contribute to the risk of atopic dermatitis and skin-specific gene expression. , 2019, The Journal of allergy and clinical immunology.

[17]  Xuebin Qu,et al.  TLR4-RelA-miR-30a signal pathway regulates Th17 differentiation during experimental autoimmune encephalomyelitis development , 2019, Journal of Neuroinflammation.

[18]  Aviv Regev,et al.  Intra- and Inter-cellular Rewiring of the Human Colon during Ulcerative Colitis , 2019, Cell.

[19]  P. Foster,et al.  Platelet activating factor receptor regulates colitis-induced pulmonary inflammation through the NLRP3 inflammasome , 2019, Mucosal Immunology.

[20]  M. Meuwis,et al.  Treatments for Crohn's Disease–Associated Bowel Damage: A Systematic Review , 2019, Clinical gastroenterology and hepatology : the official clinical practice journal of the American Gastroenterological Association.

[21]  Wei Zhou,et al.  Scalable generalized linear mixed model for region-based association tests in large biobanks and cohorts , 2019, Nature Genetics.

[22]  Chen-chen Gao,et al.  Function and dysfunction of plasma cells in intestine , 2019, Cell & Bioscience.

[23]  H. Kiyonari,et al.  Hepatic Sdf2l1 controls feeding-induced ER stress and regulates metabolism , 2019, Nature Communications.

[24]  Andrés J. García,et al.  TNFα promotes mucosal wound repair through enhanced Platelet Activating Factor Receptor signaling in the epithelium , 2019, Mucosal Immunology.

[25]  R. Ketteler,et al.  Redundancy of human ATG4 protease isoforms in autophagy and LC3/GABARAP processing revealed in cells , 2019, Autophagy.

[26]  Judy H. Cho,et al.  Single-Cell Analysis of Crohn’s Disease Lesions Identifies a Pathogenic Cellular Module Associated with Resistance to Anti-TNF Therapy , 2019, Cell.

[27]  C. Núñez,et al.  Expression patterns common and unique to ulcerative colitis and celiac disease , 2018, Annals of human genetics.

[28]  H. Kataoka,et al.  Hepatocyte Growth Factor Activator: A Proteinase Linking Tissue Injury with Repair , 2018, International journal of molecular sciences.

[29]  P. Donnelly,et al.  The UK Biobank resource with deep phenotyping and genomic data , 2018, Nature.

[30]  Quin F. Wills,et al.  Structural Remodeling of the Human Colonic Mesenchyme in Inflammatory Bowel Disease , 2018, Cell.

[31]  E. Reinherz,et al.  Regulation of thymocyte trafficking by Tagap, a GAP domain protein linked to human autoimmunity , 2018, Science Signaling.

[32]  C. McCulloch,et al.  Novel proteins that regulate cell extension formation in fibroblasts , 2018, Experimental cell research.

[33]  M. Daly,et al.  C1orf106 is a colitis risk gene that regulates stability of epithelial adherens junctions , 2018, Science.

[34]  H. Kiyono,et al.  Mucosal Mesenchymal Cells: Secondary Barrier and Peripheral Educator for the Gut Immune System , 2017, Front. Immunol..

[35]  Lars G Fritsche,et al.  Efficiently controlling for case-control imbalance and sample relatedness in large-scale genetic association studies , 2017, Nature Genetics.

[36]  Joshua A. Bittker,et al.  Small-molecule inhibitors directly target CARD9 and mimic its protective variant in inflammatory bowel disease , 2017, Proceedings of the National Academy of Sciences.

[37]  Zhuo-wei Hu,et al.  Cigarette smoke promotes COPD by activating platelet-activating factor receptor and inducing neutrophil autophagic death in mice , 2017, Oncotarget.

[38]  V. Li,et al.  Intestinal Stem Cell Niche: The Extracellular Matrix and Cellular Components , 2017, Stem cells international.

[39]  Shao-Cong Sun,et al.  NF-κB signaling in inflammation , 2017, Signal Transduction and Targeted Therapy.

[40]  Toshiro K. Ohsumi,et al.  Human RELA haploinsufficiency results in autosomal-dominant chronic mucocutaneous ulceration , 2017, The Journal of experimental medicine.

[41]  Hailiang Huang,et al.  Fine-mapping inflammatory bowel disease loci to single variant resolution , 2017, Nature.

[42]  T. Natsume,et al.  Endoplasmic reticulum proteins SDF2 and SDF2L1 act as components of the BiP chaperone cycle to prevent protein aggregation , 2017, Genes to cells : devoted to molecular & cellular mechanisms.

[43]  T. Okamura,et al.  T‐cell activation RhoGTPase‐activating protein plays an important role in TH17‐cell differentiation , 2017, Immunology and cell biology.

[44]  G. Kollias,et al.  Mesenchymal Cells in Colon Cancer. , 2017, Gastroenterology.

[45]  Loukas Moutsianas,et al.  Exploring the genetic architecture of inflammatory bowel disease , 2016 .

[46]  David C. Wilson,et al.  Genome-wide association study implicates immune activation of multiple integrin genes in inflammatory bowel disease , 2016, Nature Genetics.

[47]  Judy H. Cho,et al.  A Pleiotropic Missense Variant in SLC39A8 Is Associated With Crohn's Disease and Human Gut Microbiome Composition. , 2016, Gastroenterology.

[48]  Judy H. Cho,et al.  Insights into the genetic epidemiology of Crohn's and rare diseases in the Ashkenazi Jewish population , 2016, bioRxiv.

[49]  S. Nakae,et al.  Loss of Dok-1 and Dok-2 in mice causes severe experimental colitis accompanied by reduced expression of IL-17A and IL-22. , 2016, Biochemical and biophysical research communications.

[50]  M. Tomic-Canic,et al.  Epithelial-mesenchymal transition in tissue repair and fibrosis , 2016, Cell and Tissue Research.

[51]  Søren Brunak,et al.  Analysis of five chronic inflammatory diseases identifies 27 new associations and highlights disease-specific patterns at shared loci , 2016, Nature Genetics.

[52]  Bruce S Weir,et al.  Model-free Estimation of Recent Genetic Relatedness. , 2016, American journal of human genetics.

[53]  Beryl B. Cummings,et al.  A protein-truncating R179X variant in RNF186 confers protection against ulcerative colitis , 2015, Nature Communications.

[54]  L. Hellman,et al.  FOXO3–NF-κB RelA Protein Complexes Reduce Proinflammatory Cell Signaling and Function , 2015, The Journal of Immunology.

[55]  M. Daly,et al.  Ubiquitin Ligase TRIM62 Regulates CARD9-Mediated Anti-fungal Immunity and Intestinal Inflammation. , 2015, Immunity.

[56]  Judy H. Cho,et al.  Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations , 2015, Nature Genetics.

[57]  Mulin Jun Li,et al.  Nature Genetics Advance Online Publication a N a Ly S I S the Support of Human Genetic Evidence for Approved Drug Indications , 2022 .

[58]  Z. Granot,et al.  MET is required for the recruitment of anti-tumoural neutrophils , 2015, Nature.

[59]  Joshua C. Denny,et al.  TYK2 Protein-Coding Variants Protect against Rheumatoid Arthritis and Autoimmunity, with No Evidence of Major Pleiotropic Effects on Non-Autoimmune Complex Traits , 2015, PloS one.

[60]  J. Gommerman,et al.  Re-thinking the functions of IgA+ plasma cells , 2014, Gut microbes.

[61]  P. Pandolfi,et al.  Dok1 and Dok2 proteins regulate natural killer cell development and function , 2014, The EMBO journal.

[62]  J. Puchalka,et al.  Very Early Onset Inflammatory Bowel Disease Associated with Aberrant Trafficking of IL-10R1 and Cure by T Cell Replete Haploidentical Bone Marrow Transplantation , 2014, Journal of Clinical Immunology.

[63]  S. Kalkhof,et al.  Analysis of the STAT3 interactome using in-situ biotinylation and SILAC. , 2013, Journal of proteomics.

[64]  Judy H. Cho,et al.  Deep Resequencing of GWAS Loci Identifies Rare Variants in CARD9, IL23R and RNF186 That Are Associated with Ulcerative Colitis , 2013, PLoS genetics.

[65]  M. Parkes,et al.  Mucosal genome‐wide methylation changes in inflammatory bowel disease , 2012, Inflammatory bowel diseases.

[66]  David C. Wilson,et al.  Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease , 2012, Nature.

[67]  Joshua M. Korn,et al.  Deep resequencing of GWAS loci identifies independent rare variants associated with inflammatory bowel disease , 2011, Nature Genetics.

[68]  J Michael Mathis,et al.  Role of the endothelium in inflammatory bowel diseases. , 2011, World journal of gastroenterology.

[69]  Cisca Wijmenga,et al.  A Meta-Analysis of Genome-Wide Association Scans Identifies IL18RAP, PTPN2, TAGAP, and PUS10 As Shared Risk Loci for Crohn's Disease and Celiac Disease , 2011, PLoS genetics.

[70]  Yun Li,et al.  METAL: fast and efficient meta-analysis of genomewide association scans , 2010, Bioinform..

[71]  L. Groebe,et al.  Monocytes/macrophages and/or neutrophils are the target of IL‐10 in the LPS endotoxemia model , 2010, European journal of immunology.

[72]  A. Kaser,et al.  Endoplasmic reticulum stress in the intestinal epithelium and inflammatory bowel disease. , 2009, Seminars in immunology.

[73]  Judy H Cho,et al.  Deletion polymorphism upstream of IRGM associated with altered IRGM expression and Crohn's disease , 2008, Nature Genetics.

[74]  Judy H. Cho,et al.  Genome-wide association defines more than 30 distinct susceptibility loci for Crohn's disease , 2008, Nature Genetics.

[75]  Y. Tabuchi,et al.  Hepatocyte growth factor promotes colonic epithelial regeneration via Akt signaling. , 2007, American journal of physiology. Gastrointestinal and liver physiology.

[76]  Judy H Cho,et al.  Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis , 2007, Nature Genetics.

[77]  H. Kiyono,et al.  CCR7 Is Critically Important for Migration of Dendritic Cells in Intestinal Lamina Propria to Mesenteric Lymph Nodes1 , 2006, The Journal of Immunology.

[78]  B. Funke,et al.  Expression of chemokine receptors in normal and inflamed human intestine, tonsil, and liver--an immunohistochemical analysis with new monoclonal antibodies from the 8th international workshop and conference on human leucocyte differentiation antigens. , 2005, Cellular immunology.

[79]  D. Stengel,et al.  Platelet‐activating factor increases VE‐cadherin tyrosine phosphorylation in mouse endothelial cells and its association with the PtdIns3′‐kinase , 2005, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[80]  Katsuhiro Hayashi,et al.  Hepatocyte Growth Factor Facilitates Colonic Mucosal Repair in Experimental Ulcerative Colitis in Rats , 2003, Journal of Pharmacology and Experimental Therapeutics.

[81]  J. Hugot,et al.  Gene–environment interaction modulated by allelic heterogeneity in inflammatory diseases , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[82]  L. Hendershot,et al.  A subset of chaperones and folding enzymes form multiprotein complexes in endoplasmic reticulum to bind nascent proteins. , 2002, Molecular biology of the cell.

[83]  I. Sobhani,et al.  Raised concentrations of platelet activating factor in colonic mucosa of Crohn's disease patients. , 1992, Gut.