Polarities, quasi-symmetric designs, and Hamada’s conjecture

We prove that every polarity of PG(2k − 1,q), where k≥ 2, gives rise to a design with the same parameters and the same intersection numbers as, but not isomorphic to, PGk(2k,q). In particular, the case k = 2 yields a new family of quasi-symmetric designs. We also show that our construction provides an infinite family of counterexamples to Hamada’s conjecture, for any field of prime order p. Previously, only a handful of counterexamples were known.

[1]  Masaaki Harada,et al.  Symmetric (4,4)-Nets and Generalized Hadamard Matrices Over Groups of Order 4 , 2005, Des. Codes Cryptogr..

[2]  M. Shrikhande,et al.  Quasi Symmetric Designs (London M , 1991 .

[3]  Thomas Beth,et al.  Design Theory: Bibliography , 1999 .

[4]  Jean-Marie Goethals,et al.  On a class of majority-logic decodable cyclic codes , 1968, IEEE Trans. Inf. Theory.

[5]  William M. Kantor,et al.  Automorphisms and Isomorphisms of Symmetric and Affine Designs , 1994 .

[6]  J. Hirschfeld Projective Geometries Over Finite Fields , 1980 .

[7]  Ian F. Blake,et al.  Majority logic decoding using combinatorial designs (Corresp.) , 1975, IEEE Trans. Inf. Theory.

[8]  Dieter Jungnickel The number of designs with classical parameters grows exponentially , 1984 .

[9]  Vladimir D. Tonchev,et al.  On affine designs and Hadamard designs with line spreads , 2008, Discret. Math..

[10]  Mohan S. Shrikhande,et al.  Quasi-Symmetric Designs with Good Blocks and Intersection Number One , 2003, Des. Codes Cryptogr..

[11]  Vladimir D. Tonchev,et al.  A New Bound on the Number of Designs with Classical Affine Parameters , 2002 .

[12]  T. P. McDonough,et al.  Quasi-Symmetric Designs with Good Blocks , 1995 .

[13]  Hanfried Lenz,et al.  Design theory , 1985 .

[14]  J. Hirschfeld Finite projective spaces of three dimensions , 1986 .

[15]  Luc Teirlinck,et al.  On Projective and Affine Hyperplanes , 1980, J. Comb. Theory, Ser. A.

[16]  E. F. Assmus POLYNOMIAL CODES AND FINITE GEOMETRIES , 2003 .

[17]  Luther D. Rudolph,et al.  A class of majority logic decodable codes (Corresp.) , 1967, IEEE Trans. Inf. Theory.

[18]  Vladimir D. Tonchev,et al.  Quasi-symmetric 2-(31, 7, 7) designs and a revision of Hamada's conjecture , 1986, J. Comb. Theory, Ser. A.

[19]  J. Jensen,et al.  Sur une identité d'Abel et sur d'autres formules analogues , 1902 .

[20]  N. Hamada,et al.  On the $p$-rank of the incidence matrix of a balanced or partially balanced incomplete block design and its applications to error correcting codes , 1973 .

[21]  Vladimir D. Tonchev,et al.  Bounds on the Number of Affine, Symmetric, and Hadamard Designs and Matrices , 2000, J. Comb. Theory, Ser. A.

[22]  C. Colbourn,et al.  Handbook of Combinatorial Designs , 2006 .

[23]  Shu Lin,et al.  On the construction of a class of majority-logic decodable codes , 1971, IEEE Trans. Inf. Theory.

[24]  Jennifer D. Key,et al.  Designs and their codes: Bibliography , 1992 .

[25]  Jean Doyen,et al.  Ranks of incidence matrices of Steiner triple systems , 1978 .

[26]  Alphonse Baartmans,et al.  A characterization of projective subspaces of codimension two as quasi-symmetric designs with good blocks , 2006, Discret. Math..

[27]  N Hamada,et al.  On the BIB Design Having the Minimum p-Rank , 1975, J. Comb. Theory A.

[28]  Vladimir D. Tonchev,et al.  The number of designs with geometric parameters grows exponentially , 2010, Des. Codes Cryptogr..

[29]  Mohan S. Shrikhande,et al.  Some characterizations of quasi-symmetric designs with a spread , 1993, Des. Codes Cryptogr..

[30]  Projective geometry codes over prime fields , 1994 .

[31]  Vladimir D. Tonchev,et al.  Linear Perfect Codes and a Characterization of the Classical Designs , 1999, Des. Codes Cryptogr..

[32]  Bhaskar Bagchi,et al.  On quasi-symmetric designs , 1992, Des. Codes Cryptogr..