Resonance locking in giant planets indicated by the rapid orbital expansion of Titan

[1]  L. Iess,et al.  Titan's gravity field and interior structure after Cassini , 2019, Icarus.

[2]  M. Neveu,et al.  Evolution of Saturn’s Mid-Sized Moons , 2019, Nature Astronomy.

[3]  B. Militzer,et al.  Measurement and implications of Saturn’s gravity field and ring mass , 2019, Science.

[4]  N. Rambaux,et al.  Strong tidal energy dissipation in Saturn at Titan’s frequency as an explanation for Iapetus orbit , 2018, Astronomy & Astrophysics.

[5]  Q. Peng,et al.  First astrometric reduction of Cassini Imaging Science Subsystem images using an automatic procedure: application to Enceladus images 2013–2017 , 2018, Monthly Notices of the Royal Astronomical Society.

[6]  M. W. Evans,et al.  The Caviar software package for the astrometric reduction of Cassini ISS images: description and examples , 2018 .

[7]  T. Guillot,et al.  Jupiter's evolution with primordial composition gradients , 2018, 1801.08149.

[8]  James Evans,et al.  MONTE: the next generation of mission design and navigation software , 2018 .

[9]  Gabriel Tobie,et al.  Powering prolonged hydrothermal activity inside Enceladus , 2017 .

[10]  E. Quataert,et al.  How Cassini can constrain tidal dissipation in Saturn , 2017, 1707.02519.

[11]  Avi Shporer,et al.  Accelerated tidal circularization via resonance locking in KIC 8164262 , 2017, 1706.05053.

[12]  T. Guillot,et al.  New constraints on Saturn’s interior from Cassini astrometric data , 2015, 1510.05870.

[13]  V. Lainey Quantification of tidal parameters from Solar System data , 2016, 1604.04184.

[14]  M. Ćuk,et al.  DYNAMICAL EVIDENCE FOR A LATE FORMATION OF SATURN’S MOONS , 2016, 1603.07071.

[15]  E. Quataert,et al.  Resonance locking as the source of rapid tidal migration in the Jupiter and Saturn moon systems , 2016, 1601.05804.

[16]  Luciano Iess,et al.  Rhea gravity field and interior modeling from Cassini data analysis , 2016 .

[17]  S. Mathis,et al.  The surface signature of the tidal dissipation of the core in a two-layer planet , 2014, 1409.8343.

[18]  J. Fuller Saturn ring seismology: Evidence for stable stratification in the deep interior of Saturn , 2014, 1406.3343.

[19]  J. Fuller,et al.  Dynamical tides in compact white dwarf binaries: influence of rotation , 2014, 1406.2717.

[20]  S. W. Asmar,et al.  The Gravity Field and Interior Structure of Enceladus , 2014, Science.

[21]  G. Glatzmaier,et al.  Tidal heating in icy satellite oceans , 2014 .

[22]  E. Quataert,et al.  Dynamical resonance locking in tidally interacting binary systems , 2013, 1312.4966.

[23]  D. E. Aljure,et al.  INFLUENCE OF ROTATION , 2014 .

[24]  Gilles Chabrier,et al.  Layered convection as the origin of Saturn/'s luminosity anomaly , 2013, 1304.6184.

[25]  E. Quataert,et al.  Tidal resonance locks in inspiraling white dwarf binaries , 2012, 1211.1393.

[26]  Formation of Regular Satellites from Ancient Massive Rings in the Solar System , 2012, Science.

[27]  S. Asmar,et al.  The Tides of Titan , 2012, Science.

[28]  S. Charnoz,et al.  STRONG TIDAL DISSIPATION IN SATURN AND CONSTRAINTS ON ENCELADUS' THERMAL STATE FROM ASTROMETRY , 2012, 1204.0895.

[29]  B. Militzer,et al.  SOLUBILITY OF WATER ICE IN METALLIC HYDROGEN: CONSEQUENCES FOR CORE EROSION IN GAS GIANT PLANETS , 2012 .

[30]  S. Charnoz,et al.  Accretion of Saturn's mid-sized moons during the viscous spreading of young massive rings: Solving the paradox of silicate-poor rings versus silicate-rich moons , 2011, 1109.3360.

[31]  J. Pearl,et al.  High heat flow from Enceladus' south polar region measured using 10–600 cm−1 Cassini/CIRS data , 2011 .

[32]  Luciano Iess,et al.  Gravity Field, Shape, and Moment of Inertia of Titan , 2010, Science.

[33]  Alan B. Tanner,et al.  Atmospheric Media Calibration for the Deep Space Network , 2007, Proceedings of the IEEE.

[34]  R. French,et al.  Astrometry of Saturn’s Satellites from the Hubble Space Telescope WFPC2 , 2006 .

[35]  D. Lin,et al.  Tidal Dissipation in Rotating Giant Planets , 2003, astro-ph/0310218.

[36]  Tidal evolution of eccentric orbits in massive binary systems. A study of resonance locking , 1999, astro-ph/9909073.

[37]  C. Murray,et al.  Dynamics of the Uranian and Saturnian satelite systems: A chaotic route to melting Miranda? , 1988 .

[38]  J. Lunine Interior of Saturn. , 1985 .

[39]  A. Sinclair A Re-Consideration of the Evolution Hypothesis of the Origin of the Resonances Among Saturn’s Satellites , 1983 .

[40]  I. Shapiro,et al.  On the formation of the orbit-orbit resonance of Titan and Hyperion , 1974 .

[41]  E. Salpeter On convection and gravitational layering in Jupiter and in stars of low mass. , 1973 .

[42]  Steven Soter,et al.  Q in the solar system , 1966 .