Fractional Fourier-Kravchuk transform

We introduce a model of multimodal waveguides with a finite number of sensor points. This is a finite oscillator whose eigenstates are Kravchuk functions, which are orthonormal on a finite set of points and satisfy a physically important difference equation. The fractional finite Fourier–Kravchuk transform is defined to self-reproduce these functions. The analysis of finite signal processing uses the representations of the ordinary rotation group SO(3). This leads naturally to a phase space for finite optics such that the continuum limit (N→∞) reproduces Fourier paraxial optics.

[1]  V. Bargmann,et al.  Irreducible unitary representations of the Lorentz group , 1947 .

[2]  J. Tukey,et al.  An algorithm for the machine calculation of complex Fourier series , 1965 .

[3]  N. Vilenkin Special Functions and the Theory of Group Representations , 1968 .

[4]  Christiane Quesne,et al.  Linear Canonical Transformations and Their Unitary Representations , 1971 .

[5]  Christiane Quesne,et al.  Canonical Transformations and Matrix Elements , 1971 .

[6]  J. McClellan,et al.  Eigenvalue and eigenvector decomposition of the discrete Fourier transform , 1972 .

[7]  D. Marcuse Light transmission optics , 1972 .

[8]  William B. McKnight,et al.  From Maxwell to paraxial wave optics , 1975 .

[9]  T. Santhanam,et al.  Quantum mechanics in finite dimensions , 1976 .

[10]  K. Wolf,et al.  Symmetries of the second-difference matrix and the finite Fourier transform , 1979 .

[11]  Kurt Bernardo Wolf,et al.  Integral transforms in science and engineering , 1979 .

[12]  V. Namias The Fractional Order Fourier Transform and its Application to Quantum Mechanics , 1980 .

[13]  K. Wolf Travelling waves, symmetries and invariant quadratic forms in discrete systems , 1980 .

[14]  L. Biedenharn Angular momentum in quantum physics , 1981 .

[15]  M. L. Mehta,et al.  Eigenvalues and eigenvectors of the finite Fourier transform , 1987 .

[16]  Sergei K. Suslov,et al.  Difference analogs of the harmonic oscillator , 1990 .

[17]  V. B. Uvarov,et al.  Classical Orthogonal Polynomials of a Discrete Variable , 1991 .

[18]  René Schott,et al.  Algebraic Structures and Operator Calculus , 1993 .

[19]  K. Wolf,et al.  Approximation on a finite set of points through kravchuk functions , 1993 .

[20]  H. Ozaktas,et al.  Fractional Fourier optics , 1995 .

[21]  David Mendlovic,et al.  Optical fractional correlation: experimental results , 1995 .