WikiChurches: A Fine-Grained Dataset of Architectural Styles with Real-World Challenges

We introduce a novel dataset for architectural style classification, consisting of 9,485 images of church buildings. Both images and style labels were sourced from Wikipedia. The dataset can serve as a benchmark for various research fields, as it combines numerous real-world challenges: fine-grained distinctions between classes based on subtle visual features, a comparatively small sample size, a highly imbalanced class distribution, a high variance of viewpoints, and a hierarchical organization of labels, where only some images are labeled at the most precise level. In addition, we provide 631 bounding box annotations of characteristic visual features for 139 churches from four major categories. These annotations can, for example, be useful for research on fine-grained classification, where additional expert knowledge about distinctive object parts is often available. Images and annotations are available at https://doi.org/10.5281/zenodo.5166986. Figure 1: Example images from the 14 main styles (≥ 20 images) in the WikiChurches dataset. The numbers specify the number of images in the respective category, including sub-categories. 35th Conference on Neural Information Processing Systems (NeurIPS 2021) Track on Datasets and Benchmarks.

[1]  Junjie Wu,et al.  Architectural Style Classification Using Multinomial Latent Logistic Regression , 2014, ECCV.

[2]  Jonathan Krause,et al.  3D Object Representations for Fine-Grained Categorization , 2013, 2013 IEEE International Conference on Computer Vision Workshops.

[3]  E. Prud hommeaux,et al.  SPARQL query language for RDF , 2011 .

[4]  Sergey Ioffe,et al.  Rethinking the Inception Architecture for Computer Vision , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[5]  Joachim Denzler,et al.  Integrating domain knowledge: using hierarchies to improve deep classifiers , 2018, ACPR.

[6]  Pietro Perona,et al.  The Caltech-UCSD Birds-200-2011 Dataset , 2011 .

[7]  Nicolas Usunier,et al.  End-to-End Object Detection with Transformers , 2020, ECCV.

[8]  Duy-Dinh Le,et al.  An Evaluation of Deep Learning Methods for Small Object Detection , 2020, J. Electr. Comput. Eng..

[9]  Ameet Talwalkar,et al.  A System for Massively Parallel Hyperparameter Tuning , 2020, MLSys.

[10]  Samy Bengio,et al.  Large-Scale Object Classification Using Label Relation Graphs , 2014, ECCV.

[11]  Roberto Medina,et al.  Classification of Architectural Heritage Images Using Deep Learning Techniques , 2017 .

[12]  Shin'ichi Satoh,et al.  Region-Based Image Retrieval Revisited , 2017, ACM Multimedia.

[13]  Joachim Denzler,et al.  Interactive Image Retrieval for Biodiversity Research , 2015, GCPR.

[14]  Osman Semih Kayhan,et al.  VIPriors 1: Visual Inductive Priors for Data-Efficient Deep Learning Challenges , 2021, ArXiv.

[15]  Bolei Zhou,et al.  Places: A 10 Million Image Database for Scene Recognition , 2018, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[16]  Cordelia Schmid,et al.  Semantic Hierarchies for Visual Object Recognition , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[17]  Francisco Herrera,et al.  MonuMAI: Dataset, deep learning pipeline and citizen science based app for monumental heritage taxonomy and classification , 2021, Neurocomputing.

[18]  Markus Krötzsch,et al.  Wikidata , 2014, Commun. ACM.

[19]  Serge J. Belongie,et al.  The Herbarium 2021 Half-Earth Challenge Dataset , 2021, ArXiv.

[20]  Frank Hutter,et al.  SGDR: Stochastic Gradient Descent with Warm Restarts , 2016, ICLR.

[21]  Joachim Denzler,et al.  Making Every Label Count: Handling Semantic Imprecision by Integrating Domain Knowledge , 2020, 2020 25th International Conference on Pattern Recognition (ICPR).

[22]  Li Fei-Fei,et al.  ImageNet: A large-scale hierarchical image database , 2009, CVPR.

[23]  Joachim Denzler,et al.  Deep Learning on Small Datasets without Pre-Training using Cosine Loss , 2019, 2020 IEEE Winter Conference on Applications of Computer Vision (WACV).

[24]  Michael S. Bernstein,et al.  ImageNet Large Scale Visual Recognition Challenge , 2014, International Journal of Computer Vision.

[25]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[26]  Yang Song,et al.  The iNaturalist Species Classification and Detection Dataset , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[27]  Lihi Zelnik-Manor,et al.  ImageNet-21K Pretraining for the Masses , 2021, NeurIPS Datasets and Benchmarks.

[28]  Joachim Denzler,et al.  Nonparametric Part Transfer for Fine-Grained Recognition , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[29]  Subhransu Maji,et al.  The Semi-Supervised iNaturalist Challenge at the FGVC8 Workshop , 2021, ArXiv.

[30]  Joachim Denzler,et al.  Classification-Specific Parts for Improving Fine-Grained Visual Categorization , 2019, GCPR.