Dissociation of two-dimensional excitons in monolayer WSe2

Two-dimensional (2D) semiconducting materials are promising building blocks for optoelectronic applications, many of which require efficient dissociation of excitons into free electrons and holes. However, the strongly bound excitons arising from the enhanced Coulomb interaction in these monolayers suppresses the creation of free carriers. Here, we identify the main exciton dissociation mechanism through time and spectrally resolved photocurrent measurements in a monolayer WSe2p–n junction. We find that under static in-plane electric field, excitons dissociate at a rate corresponding to the one predicted for tunnel ionization of 2D Wannier–Mott excitons. This study is essential for understanding the photoresponse of 2D semiconductors and offers design rules for the realization of efficient photodetectors, valley dependent optoelectronics, and novel quantum coherent phases.In two-dimensional semiconductors excitons are strongly bound, suppressing the creation of free carriers. Here, the authors investigate the main exciton dissociation pathway in p-n junctions of monolayer WSe2 by means of time and spectrally resolved photocurrent measurements.

[1]  Kai Müller,et al.  Stark Effect Spectroscopy of Mono- and Few-Layer MoS2. , 2016, Nano letters.

[2]  A. Chernikov,et al.  Direct Observation of Ultrafast Exciton Formation in a Monolayer of WSe2. , 2017, Nano letters.

[3]  P. Jarillo-Herrero,et al.  Optoelectronic devices based on electrically tunable p-n diodes in a monolayer dichalcogenide. , 2013, Nature nanotechnology.

[4]  P. L. McEuen,et al.  The valley Hall effect in MoS2 transistors , 2014, Science.

[5]  Yifei Yu,et al.  Limits of Exciton-Exciton Annihilation for Light Emission in Transition Metal Dichalcogenide Monolayers , 2015, 1512.00945.

[6]  G Khitrova,et al.  Semiconductor excitons in new light , 2006, Nature materials.

[7]  R. Bratschitsch,et al.  Resonant internal quantum transitions and femtosecond radiative decay of excitons in monolayer WSe2. , 2015, Nature materials.

[8]  Vladimir I. Fal'ko,et al.  Auger recombination of dark excitons in WS2 and WSe2 monolayers , 2016, 1607.00962.

[9]  S. Tiwari,et al.  Ultrafast response of monolayer molybdenum disulfide photodetectors , 2015, Nature Communications.

[10]  K. Thygesen,et al.  Excitons in van der Waals heterostructures: The important role of dielectric screening , 2015, 1509.07972.

[11]  T. Heinz,et al.  Observation of rapid exciton-exciton annihilation in monolayer molybdenum disulfide. , 2014, Nano letters.

[12]  J. Shan,et al.  Tightly bound trions in monolayer MoS2. , 2012, Nature materials.

[13]  Timothy C. Berkelbach,et al.  Observation of biexcitons in monolayer WSe2 , 2015, Nature Physics.

[14]  G. Eda,et al.  Nonlinear photoluminescence in atomically thin layered WSe 2 arising from diffusion-assisted exciton-exciton annihilation , 2014, 1405.5781.

[15]  Jing Kong,et al.  Valley-selective optical Stark effect in monolayer WS2. , 2014, Nature materials.

[16]  J. STARK,et al.  Observation of the Separation of Spectral Lines by an Electric Field , 1913, Nature.

[17]  Libai Huang,et al.  Exciton dynamics and annihilation in WS2 2D semiconductors. , 2015, Nanoscale.

[18]  J. Shan,et al.  Tightly bound excitons in monolayer WSe(2). , 2014, Physical review letters.

[19]  K. Thygesen,et al.  Dielectric Genome of van der Waals Heterostructures. , 2015, Nano letters.

[20]  J. Shan,et al.  Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides , 2016, Nature Photonics.

[21]  Wei Ruan,et al.  Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. , 2014, Nature materials.

[22]  T. Pedersen Exciton Stark shift and electroabsorption in monolayer transition-metal dichalcogenides , 2016 .

[23]  Picosecond photoresponse in van der Waals heterostructures. , 2015, Nature nanotechnology.

[24]  Timothy C. Berkelbach,et al.  Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS(2). , 2014, Physical review letters.

[25]  K. Thygesen,et al.  Exciton ionization in multilayer transition-metal dichalcogenides , 2016 .

[26]  Wang Yao,et al.  Spin and pseudospins in layered transition metal dichalcogenides , 2014, Nature Physics.

[27]  Exciton fission in monolayer transition metal dichalcogenide semiconductors , 2017, Nature Communications.

[28]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[29]  Q. Cui,et al.  Exciton formation in monolayer transition metal dichalcogenides. , 2016, Nanoscale.

[30]  Lei Wang,et al.  Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. , 2015, Nature nanotechnology.

[31]  Aaron M. Jones,et al.  Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions. , 2013, Nature nanotechnology.

[32]  D. N. Basov,et al.  Polaritons in van der Waals materials , 2016, Science.

[33]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[34]  Aaron M. Jones,et al.  Electrical control of neutral and charged excitons in a monolayer semiconductor , 2012, Nature Communications.

[35]  V. Perebeinos,et al.  Excitonic Stark effect in MoS 2 monolayers , 2016, 1606.03902.

[36]  Lain-Jong Li,et al.  Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers , 2014, Science.

[37]  T. Heinz,et al.  Population inversion and giant bandgap renormalization in atomically thin WS2 layers , 2015, Nature Photonics.

[38]  B. Jonker,et al.  Auger Recombination in Chemical Vapor Deposition-Grown Monolayer WS2. , 2016, The journal of physical chemistry letters.

[39]  Xiaodong Xu,et al.  Valleytronics in 2D materials , 2016 .

[40]  Thomas Mueller,et al.  Mechanisms of photoconductivity in atomically thin MoS2. , 2014, Nano letters.

[41]  Jiaqiang Yan,et al.  Many-body effects in nonlinear optical responses of 2D layered semiconductors , 2016, 1612.02714.

[42]  K. Thygesen,et al.  Stark shift and electric-field-induced dissociation of excitons in monolayer MoS2 and hBN/MoS2 heterostructures , 2016 .

[43]  P. Avouris,et al.  Photodetectors based on graphene, other two-dimensional materials and hybrid systems. , 2014, Nature nanotechnology.

[44]  K. L. Shepard,et al.  One-Dimensional Electrical Contact to a Two-Dimensional Material , 2013, Science.

[45]  Xiaodong Xu,et al.  Probing the Influence of Dielectric Environment on Excitons in Monolayer WSe2: Insight from High Magnetic Fields. , 2016, Nano letters.

[46]  F. Guinea,et al.  Polaritons in layered two-dimensional materials. , 2016, Nature materials.