Accretion of stars on to a massive black hole: a realistic diffusion model and numerical studies

We present a study of the secular evolution of a spherical stellar system with a central star-accreting black hole (BH) using the anisotropic gaseous model. This method solves numerically moment equations of the full Fokker–Planck equation, with Boltzmann–Vlasov terms on the left-hand side and collisional terms on the right-hand side. We study the growth of the central BH due to star accretion at its tidal radius and the feedback of this process on to the core collapse as well as the post-collapse evolution of the surrounding stellar cluster in a self-consistent manner. Diffusion in velocity space into the loss cone is approximated by a simple model. The results show that the self-regulated growth of the BH reaches a certain fraction of the total mass cluster and agrees with other methods. Our approach is much faster than competing ones (Monte Carlo, N-body) and provides detailed information about the time- and space-dependent evolution of all relevant properties of the system. In this paper we present the method and study simple models (equal stellar masses, no stellar evolution or collisions). None the less, a generalization to include such effects is conceptually simple and under way.

[1]  M. Freitag,et al.  A comprehensive set of simulations of high-velocity collisions between main-sequence stars , 2004, astro-ph/0403621.

[2]  S. Tremaine,et al.  Galactic Dynamics , 2005 .

[3]  J. Centrella THE ASTROPHYSICS OF GRAVITATIONAL WAVE SOURCES , 2003 .

[4]  E. Colbert,et al.  Intermediate - mass black holes , 2003, astro-ph/0308402.

[5]  S. Tremaine,et al.  Kinematics of 10 Early-Type Galaxies from Hubble Space Telescope and Ground-based Spectroscopy , 2003, astro-ph/0306464.

[6]  J. Kormendy The Stellar-Dynamical Search for Supermassive Black Holes in Galactic Nuclei , 2003, astro-ph/0306353.

[7]  A. Eckart,et al.  Stellar Dynamics in the Central Arcsecond of Our Galaxy , 2003, astro-ph/0306214.

[8]  M. Freitag Captures of stars by a massive black hole: Investigations in numerical stellar dynamics , 2003, astro-ph/0306064.

[9]  S. Sigurdsson The loss cone: past, present and future , 2003, astro-ph/0304251.

[10]  Matthew Bierbaum,et al.  Formation of Massive Black Holes in Dense Star Clusters. I. Mass Segregation and Core Collapse , 2003, astro-ph/0308449.

[11]  D. Thompson,et al.  The First Measurement of Spectral Lines in a Short-Period Star Bound to the Galaxy’s Central Black Hole: A Paradox of Youth , 2003, astro-ph/0302299.

[12]  M. Giersz,et al.  A stochastic Monte Carlo approach to modelling real star cluster evolution - III. Direct integration of three- and four-body interactions , 2003, astro-ph/0301643.

[13]  F. A. Rasio,et al.  Monte Carlo Simulations of Globular Cluster Evolution. III. Primordial Binary Interactions , 2003, astro-ph/0301521.

[14]  P. Hut,et al.  UvA-DARE ( Digital Academic Repository ) A Dynamical Model for the Globular Cluster G 1 , 2003 .

[15]  Rainer Spurzem,et al.  Long-Term Evolution of Massive Black Hole Binaries , 2002, astro-ph/0212459.

[16]  M. Freitag Gravitational Waves from Stars Orbiting the Sagittarius A* Black Hole , 2002, astro-ph/0211209.

[17]  J. Gerssen,et al.  Addendum: Hubble Space Telescope Evidence for an Intermediate-Mass Black Hole in the Globular Cluster M15. II. Kinematic Analysis and Dynamical Modeling [Astron. J. 124, 3270 (2002)] , 2002, astro-ph/0210158.

[18]  J. Makino,et al.  On the Central Structure of M15 , 2002, astro-ph/0210133.

[19]  L. Ho,et al.  A 20,000 M☉ Black Hole in the Stellar Cluster G1 , 2002, astro-ph/0209313.

[20]  Puragra Guhathakurta,et al.  Hubble Space Telescope Evidence for an Intermediate-Mass Black Hole in the Globular Cluster M15. I. STIS Spectroscopy and WFPC2 Photometry , 2002, astro-ph/0209314.

[21]  J. Gerssen,et al.  Hubble Space Telescope Evidence for an Intermediate-Mass Black Hole in the Globular Cluster M15. II. Kinematic Analysis and Dynamical Modeling , 2002, astro-ph/0209315.

[22]  U. Bern,et al.  A new Monte Carlo code for star cluster simulations - II. Central black hole and stellar collisions , 2002, astro-ph/0204292.

[23]  S. Tremaine,et al.  Observational constraints on growth of massive black holes , 2002, astro-ph/0203082.

[24]  Simon F. Portegies Zwart,et al.  The Runaway Growth of Intermediate-Mass Black Holes in Dense Star Clusters , 2002, astro-ph/0201055.

[25]  L. Hernquist,et al.  Dynamics of a Massive Black Hole at the Center of a Dense Stellar System , 2001, astro-ph/0107287.

[26]  David Merritt,et al.  Systolic and Hyper-Systolic Algorithms for the Gravitational N-Body Problem, with an Application to Brownian Motion , 2001, ArXiv.

[27]  D. Merritt,et al.  No Supermassive Black Hole in M33? , 2001, Science.

[28]  T. Lauer,et al.  M33: A Galaxy with No Supermassive Black Hole , 2001, astro-ph/0107135.

[29]  Toshikazu Ebisuzaki,et al.  UvA-DARE ( Digital Academic Repository ) Missing Link Found ? The " Runaway " Path to Supermassive Black Holes , 2001 .

[30]  P. Amaro-Seoane,et al.  The loss-cone problem in dense nuclei , 2001, astro-ph/0105251.

[31]  Bradley M. Peterson,et al.  Supermassive Black Holes in Active Galactic Nuclei. I. The Consistency of Black Hole Masses in Quiescent and Active Galaxies , 2001, astro-ph/0104380.

[32]  M. Freitag,et al.  A new Monte Carlo code for star cluster simulations - I. Relaxation , 2001, astro-ph/0102139.

[33]  Cody P. Nave,et al.  Monte Carlo Simulations of Globular Cluster Evolution. II. Mass Spectra, Stellar Evolution, and Lifetimes in the Galaxy , 1999, astro-ph/9912155.

[34]  Andrew Gould,et al.  A Cluster of Black Holes at the Galactic Center , 2000, astro-ph/0003269.

[35]  M. Giersz,et al.  A stochastic Monte Carlo approach to model real star cluster evolution - II. Self-consistent models and primordial binaries , 1999, astro-ph/9911504.

[36]  J. M. Moran,et al.  Observational evidence for massive black holes in the centers of active galaxies , 1999, astro-ph/0002085.

[37]  S. Aarseth From NBODY1 to NBODY6: The Growth of an Industry , 1999 .

[38]  J. M. Moran,et al.  A geometric distance to the galaxy NGC4258 from orbital motions in a nuclear gas disk , 1999, Nature.

[39]  R. Spurzem Direct N-body simulations , 1999, astro-ph/9906154.

[40]  S. Tremaine,et al.  Rates of tidal disruption of stars by massive central black holes , 1999, astro-ph/9902032.

[41]  S. Aarseth Star Cluster Simulations: the State of the Art , 1999, astro-ph/9901069.

[42]  D. Syer,et al.  Tidal disruption rates of stars in observed galaxies , 1998, astro-ph/9812389.

[43]  M. Giersz Monte Carlo simulations of star clusters - I. First Results , 1998, astro-ph/9804127.

[44]  Koji Takahashi Fokker-Planck Models of Star Clusters with Anisotropic Velocity Distributions III. Multi-mass Clusters , 1997, astro-ph/9703190.

[45]  S. Aarseth,et al.  Direct collisional simulation of 10000 particles past core collapse , 1996, astro-ph/9605003.

[46]  Koji Takahashi Fokker-Planck Models of Star Clusters with Anisotropic Velocity Distributions II. Post-Collapse Evolution , 1995, astro-ph/9507040.

[47]  Naomasa Nakai,et al.  Evidence for a black hole from high rotation velocities in a sub-parsec region of NGC4258 , 1995, Nature.

[48]  D. Heggie,et al.  Statistics of N-Body Simulations - Part Two - Equal Masses after Core Collapse , 1994, astro-ph/9403024.

[49]  S. Tremaine,et al.  A family of models for spherical stellar systems , 1993, astro-ph/9309044.

[50]  M. Giersz,et al.  A comparison of direct N-body integration with anisotropic gaseous models of star clusters , 1993, astro-ph/9305033.

[51]  Walter Dehnen,et al.  A family of potential–density pairs for spherical galaxies and bulges , 1993 .

[52]  Mark R. Morris,et al.  Massive star formation near the Galactic center and the fate of the stellar remnants , 1993 .

[53]  R. Spurzem Evolution of Stars and Gas in Galactic Nuclei , 1992 .

[54]  R. Spurzem Gravothermal instability of anisotropic self-gravitating gas spheres : singular equilibrium solution , 1991 .

[55]  Rainer Spurzem,et al.  Anisotropic gaseous models for the evolution of star clusters , 1991 .

[56]  Richard H. Durisen,et al.  Dynamical and luminosity evolution of active galactic nuclei - Models with a mass spectrum , 1991 .

[57]  M. Rees "Dead Quasars" in Nearby Galaxies? , 1990, Science.

[58]  Achim Weiss,et al.  Stellar Structure and Evolution , 1990 .

[59]  D. Heggie,et al.  Evolution of star clusters after core collapse , 1989 .

[60]  R. Durisen,et al.  The Evolution of Active Galactic Nuclei. II. Models with Stellar Evolution , 1987 .

[61]  R. Durisen,et al.  The Evolution of Active Galactic Nuclei. I. Models without Stellar Evolution , 1987 .

[62]  L. Spitzer Dynamical evolution of globular clusters , 1987 .

[63]  Piet Hut,et al.  Use of Supercomputers in Stellar Dynamics , 1986 .

[64]  Robert D. Mathieu,et al.  Standardised units and time scales , 1986 .

[65]  D. Sugimoto,et al.  Gravitational N-body problem and the validity of concepts of the gas model , 1985 .

[66]  D. Sugimoto,et al.  Post-collapse evolution and gravothermal oscillation of globular clusters , 1984 .

[67]  J. Goodman Homologous evolution of stellar systems after core collapse , 1984 .

[68]  M. Rees BLACK HOLE MODELS FOR ACTIVE GALACTIC NUCLEI , 1984 .

[69]  D. Heggie Post-collapse evolution of a gaseous cluster model , 1984 .

[70]  E. Bettwieser A numerical method for the study of the gravothermal instability in star clusters , 1983 .

[71]  Andrzej Soƚtan,et al.  Masses of quasars , 1982 .

[72]  S. L. Shapiro,et al.  Star clusters containing massive central black holes. IV. Galactic tidal fields , 1982 .

[73]  J. Stodolkiewicz Dynamical evolution of globular clusters. I , 1982 .

[74]  S. McMillan,et al.  Luminosity evolution of quasars and active galaxies - Theoretical models of the evolving mass supply rate , 1981 .

[75]  L. Costa Star distribution in the presence of a massive central gas cloud , 1981 .

[76]  S. Tremaine,et al.  A reinvestigation of the standard model for the dynamics of a massive black hole in a globular cluster , 1980 .

[77]  P. P. Eggleton,et al.  On the consequences of the gravothermal catastrophe , 1980 .

[78]  A. Marchant,et al.  Star clusters containing massive, central black holes. II. Self-consistent potentials. , 1979 .

[79]  S. L. Shapiro,et al.  Star clusters containing massive, central black holes. III - Evolution calculations , 1979 .

[80]  R. Kulsrud,et al.  Stellar distribution around a black hole: Numerical integration of the Fokker-Planck equation , 1978 .

[81]  K. Nomoto,et al.  Gravothermal Catastrophe of Finite Amplitude , 1978 .

[82]  S. Shapiro Dissolution of globular clusters containing massive black holes , 1977 .

[83]  S. Shapiro,et al.  The distribution and consumption rate of stars around a massive, collapsed object , 1977 .

[84]  Richard A. Wolf,et al.  Star distribution around a massive black hole in a globular cluster , 1976 .

[85]  Martin J. Rees,et al.  Effects of Massive Central Black Holes on Dense Stellar Systems , 1976 .

[86]  S. Shapiro,et al.  The distribution of stars around a massive black hole , 1976, Nature.

[87]  J. Hills Possible power source of Seyfert galaxies and QSOs , 1975, Nature.

[88]  P. J. E. Peebles,et al.  Star Distribution Near a Collapsed Object , 1972 .

[89]  M. Hénon Monte Carlo models of star clusters , 1971 .

[90]  M. Rees,et al.  On Quasars, Dust and the Galactic Centre , 1971 .

[91]  D. Lynden-Bell,et al.  Galactic Nuclei as Collapsed Old Quasars , 1969, Nature.

[92]  D. Lynden-Bell Statistical Mechanics of Violent Relaxation in Stellar Systems , 1967 .

[93]  L. G. Henyey,et al.  A Method for Automatic Computation of Stellar Evolution. , 1959 .

[94]  Annales d'Astrophysique , 1946, Nature.