Comparing the strength of f.c.c. and b.c.c. sub-micrometer pillars: Compression experiments and dislocation dynamics simulations

We compare mechanical strength of f.c.c. gold and b.c.c. molybdenum single crystal pillars of sub-micrometer diameter in uniaxial compression tests. Both crystals show an increase of flow stress with decreasing diameter, but the change is more pronounced in Au than in Mo. The ratio between the observed maximum flow stress and the theoretical strength is much larger in Au pillars than in Mo pillars. Dislocation dynamics simulations also reveal different dislocation behavior in these two metals. While in a f.c.c. crystal a dislocation loop nucleated from the surface simply moves on its glide plane and exits the pillar, in a b.c.c. crystal it can generate multiple new dislocations due to the ease of screw dislocations to change slip planes. We postulate that this difference in dislocation behavior is the fundamental reason for the observed difference in the plastic deformation behavior of f.c.c. and b.c.c. pillars.

[1]  Huajian Gao,et al.  Mechanism-based strain gradient plasticity—II. Analysis , 2000 .

[2]  Bin Wu,et al.  Mechanical properties of ultrahigh-strength gold nanowires , 2005, Nature materials.

[3]  A. Ngan,et al.  The strength of submicron-sized materials , 2006 .

[4]  F. Nabarro,et al.  Dislocations in solids , 1979 .

[5]  van der Erik Giessen,et al.  Aspects of boundary-value problem solutions with three-dimensional dislocation dynamics , 2002 .

[6]  Alan Needleman,et al.  Discrete dislocation modeling in three-dimensional confined volumes , 2001 .

[7]  J. Greer,et al.  Nanoscale gold pillars strengthened through dislocation starvation , 2006 .

[8]  Sidney Yip,et al.  Ideal shear strain of metals and ceramics , 2004 .

[9]  K. Schwarz,et al.  Simulation of dislocations on the mesoscopic scale. I. Methods and examples , 1999 .

[10]  Joost J. Vlassak,et al.  Plastic deformation of freestanding thin films: Experiments and modeling , 2006 .

[11]  G. Pharr,et al.  The correlation of the indentation size effect measured with indenters of various shapes , 2002 .

[12]  Huajian Gao,et al.  Indentation size effects in crystalline materials: A law for strain gradient plasticity , 1998 .

[13]  C. A. Volkert,et al.  Size effects in the deformation of sub-micron Au columns , 2006 .

[14]  P. L. Pratt,et al.  The Effect of Orientation on the Yielding and Flow of Molybdenum Single Crystals , 1966, 1966.

[15]  Remo Guidieri Res , 1995, RES: Anthropology and Aesthetics.

[16]  D. Dimiduk,et al.  Sample Dimensions Influence Strength and Crystal Plasticity , 2004, Science.

[17]  Wei Cai,et al.  Scalable Line Dynamics in ParaDiS , 2004, Proceedings of the ACM/IEEE SC2004 Conference.

[18]  S. Papson,et al.  “Model” , 1981 .

[19]  G. Gladwell,et al.  Solid mechanics and its applications , 1990 .

[20]  K. Schwarz Discrete dislocation dynamics study of strained-layer relaxation. , 2003, Physical review letters.

[21]  D. E. Kramer,et al.  Plastic strain and strain gradients at very small indentation depths , 2001 .

[22]  Huajian Gao,et al.  A study of microindentation hardness tests by mechanism-based strain gradient plasticity , 2000 .

[23]  Athanasios Arsenlis,et al.  Enabling strain hardening simulations with dislocation dynamics , 2006 .

[24]  E. M. Savit︠s︡kiĭ Handbook of Precious Metals , 1989 .

[25]  K. Huang,et al.  Analytic and numerical studies on mode I and mode II fracture in elastic-plastic materials with strain gradient effects , 1999 .

[26]  W. Nix,et al.  Modeling Plasticity at the Micrometer Scale , 1999, Naturwissenschaften.

[27]  Vasily V. Bulatov,et al.  Mobility laws in dislocation dynamics simulations , 2003 .

[28]  N. M. Ghoniem *,et al.  Dislocation motion in anisotropic multilayer materials , 2005 .

[29]  Huajian Gao,et al.  Mechanism-based strain gradient plasticity— I. Theory , 1999 .

[30]  Jaime Marian,et al.  Dynamic transitions from smooth to rough to twinning in dislocation motion , 2004, Nature materials.

[31]  Nasr M. Ghoniem,et al.  Fast-sum method for the elastic field of three-dimensional dislocation ensembles , 1999 .

[32]  Julia R. Greer,et al.  Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients , 2005 .