Global Existence for a Parabolic Chemotaxis Model with Prevention of Overcrowding

In this paper we study a version of the Keller-Segel model where the chemotactic cross-diffusion depends on both the external signal and the local population density. A parabolic quasi-linear strongly coupled system follows. By incorporation of a population-sensing (or ''quorum-sensing'') mechanism, we assume that the chemotactic response is switched off at high cell densities. The response to high population densities prevents overcrowding, and we prove local and global existence in time of classical solutions. Numerical simulations show interesting phenomena of pattern formation and formation of stable aggregates. We discuss the results with respect to previous analytical results on the Keller-Segel model.

[1]  Florian Siegert,et al.  Spiral and concentric waves organize multicellular Dictyostelium mounds , 1995, Current Biology.

[2]  M. A. Herrero,et al.  Singularity patterns in a chemotaxis model , 1996 .

[3]  Piotr Biler,et al.  LOCAL AND GLOBAL SOLVABILITY OF SOME PARABOLIC SYSTEMS MODELLING CHEMOTAXIS , 1998 .

[4]  H. Gajewski,et al.  On a Reaction - Diffusion System Modelling Chemotaxis , 2000 .

[5]  L. Segel,et al.  Initiation of slime mold aggregation viewed as an instability. , 1970, Journal of theoretical biology.

[6]  Jerome Percus,et al.  Nonlinear aspects of chemotaxis , 1981 .

[7]  C. Patlak Random walk with persistence and external bias , 1953 .

[8]  Michael E. Taylor,et al.  Partial Differential Equations III , 1996 .

[9]  Howard A. Levine,et al.  A System of Reaction Diffusion Equations Arising in the Theory of Reinforced Random Walks , 1997, SIAM J. Appl. Math..

[10]  Hans G. Othmer,et al.  Aggregation, Blowup, and Collapse: The ABC's of Taxis in Reinforced Random Walks , 1997, SIAM J. Appl. Math..

[11]  Toshitaka Nagai,et al.  Behavior of radially symmetric solutions of a system related to chemotaxis , 1997 .

[12]  Thomas Hillen,et al.  Hyperbolic models for chemotaxis in 1-D , 2000 .

[13]  M. A. Herrero,et al.  Chemotactic collapse for the Keller-Segel model , 1996, Journal of mathematical biology.

[14]  W. Jäger,et al.  On explosions of solutions to a system of partial differential equations modelling chemotaxis , 1992 .

[15]  O. Ladyženskaja Linear and Quasilinear Equations of Parabolic Type , 1968 .

[16]  A System of Non-linear Partial Differential Equations Modeling Chemotaxis with Sensitivity Functions , 1999 .

[17]  Global existence of solutions to the parabolic systems of chemotaxis(Nonlinear Evolution Equations and Applications) , 1997 .

[18]  Atsushi Yagi,et al.  NORM BEHAVIOR OF SOLUTIONS TO A PARABOLIC SYSTEM OF CHEMOTAXIS , 1997 .

[19]  R. Schaaf Stationary solutions of chemotaxis systems , 1985 .

[20]  V. Nanjundiah,et al.  Chemotaxis, signal relaying and aggregation morphology. , 1973, Journal of theoretical biology.

[21]  F. Siegert,et al.  Induction of optical density waves and chemotactic cell movement in Dictyostelium discoideum by microinjection of cAMP pulses. , 1998, Developmental biology.

[22]  Herbert Amann,et al.  Quasilinear evolution equations and parabolic systems , 1986 .

[23]  Stephen Childress,et al.  Chemotactic Collapse in Two Dimensions , 1984 .

[24]  M. Rascle,et al.  Finite time blow-up in some models of chemotaxis , 1995, Journal of mathematical biology.