Lung MRI at 1.5 and 3 Tesla: Observer Preference Study and Lesion Contrast Using Five Different Pulse Sequences

Objectives:To compare the image quality and lesion contrast of lung MRI using 5 different pulse sequences at 1.5 T and 3 T. Materials and Methods:Lung MRI was performed at 1.5 T and 3 T using 5 pulse sequences which have been previously proposed for lung MRI: 3D volumetric interpolated breath-hold examination (VIBE), true fast imaging with steady-state precession (TrueFISP), half-Fourier single-shot turbo spin-echo (HASTE), short tau inversion recovery (STIR), T2-weighted turbo spin-echo (TSE). In addition to 4 healthy volunteers, 5 porcine lungs were examined in a dedicated chest phantom. Lung pathology (nodules and infiltrates) was simulated in the phantom by intrapulmonary and intrabronchial injections of agarose. CT was performed in the phantom for correlation. Image quality of the sequences was ranked in a side-by-side comparison by 3 blinded radiologists regarding the delineation of pulmonary and mediastinal anatomy, conspicuity of pulmonary nodules and infiltrates, and presence of artifacts. The contrast of nodules and infiltrates (CNODULES and CINFILTRATES) defined by the ratio of the signal intensities of the lesion and adjacent normal lung parenchyma was determined. Results:There were no relevant differences regarding the preference for the individual sequences between both field strengths. TSE was the preferred sequence for the visualization of the mediastinum at both field strengths. For the visualization of lung parenchyma the observers preferred TrueFISP in volunteers and TSE in the phantom studies. At both field strengths VIBE achieved the best rating for the depiction of nodules, whereas HASTE was rated best for the delineation of infiltrates. TrueFISP had the fewest artifacts in volunteers, whereas STIR showed the fewest artifacts in the phantom. For all but the TrueFISP sequence the lesion contrast increased from 1.5 T to 3 T. At both field strengths VIBE showed the highest CNODULES (6.6 and 7.1) and HASTE the highest CINFILTRATES (6.1 and 6.3). Conclusion:The imaging characteristics of different pulse sequences used for lung MRI do not substantially differ between 1.5 T and 3 T. A higher lesion contrast can be expected at 3 T.

[1]  Brian M Dale,et al.  Abdominal MRI at 3.0 T: the basics revisited. , 2006, AJR. American journal of roentgenology.

[2]  J. Biederer,et al.  Volumetric interpolated contrast‐enhanced MRA for the diagnosis of pulmonary embolism in an ex vivo system , 2004, Journal of magnetic resonance imaging : JMRI.

[3]  F. Schick,et al.  [Detection of pulmonary nodules with breath-hold magnetic resonance imaging in comparison with computed tomography]. , 2005, RoFo : Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin.

[4]  M. Heller,et al.  Sensitivitt der MRT fr alveolre Infiltrate: Experimentelle Untersuchungen , 2002 .

[5]  M. Heike,et al.  Prospektive Machbarkeitsstudie zum Vergleich von Röntgenübersichtsaufnahme und Thorax-MRT in Atemanhaltetechnik am offenen Niederfeldgerät , 2002 .

[6]  A. Kluge,et al.  Thorakale Echtzeit-MRT: Erfahrungen aus 2200 Untersuchungen bei akuten und unklaren thorakalen Erkrankungen , 2005 .

[7]  S. Tomiguchi,et al.  MR imaging of focal lung lesions: Elimination of flow and motion artifact by breath‐hold ECG‐gated and black‐blood techniques on T2‐weighted turbo SE and STIR sequences , 1999, Journal of magnetic resonance imaging : JMRI.

[8]  G. Adam,et al.  Detection of small pulmonary nodules in high-field MR at 3 T: evaluation of different pulse sequences using porcine lung explants , 2007, European Radiology.

[9]  H. Bolte,et al.  Pulmonary nodule detection with digital projection radiography: an ex-vivo study on increased latitude post-processing , 2007, European Radiology.

[10]  O. Ekinci,et al.  [Thoracic real-time MRI: experience from 2200 examinations in acute and ill-defined thoracic diseases]. , 2005, RoFo : Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin.

[11]  H. Kauczor,et al.  Proton MRI appearance of cystic fibrosis: Comparison to CT , 2007, European Radiology.

[12]  J. Biederer,et al.  Simulated pulmonary nodules implanted in a dedicated porcine chest phantom: sensitivity of MR imaging for detection. , 2003, Radiology.

[13]  C. Claussen,et al.  Detektion von lungenrundherden mit der Magnetresonanztomographie in Atemanhaltetechnik im Vergleich zur Spiral-Computertomographie , 2005 .

[14]  R. Semelka,et al.  Emerging techniques: Whole‐body screening and staging with MRI , 2006, Journal of magnetic resonance imaging : JMRI.

[15]  J. Debatin,et al.  HASTE MRI versus chest radiography in the detection of pulmonary nodules: comparison with MDCT. , 2004, AJR. American journal of roentgenology.

[16]  J. Debatin,et al.  Full-body cardiovascular and tumor MRI for early detection of disease: feasibility and initial experience in 298 subjects. , 2005, AJR. American journal of roentgenology.

[17]  R. Hubner,et al.  Fast T1- and T2-weighted pulmonary MR-imaging in patients with bronchial carcinoma. , 2005, European journal of radiology.

[18]  Hans-Ulrich Kauczor,et al.  Contrast-enhanced 3D MRI of lung perfusion in children with cystic fibrosis—initial results , 2006, European Radiology.

[19]  H. Bolte,et al.  Reproducibility of Computer-Aided Volumetry of Artificial Small Pulmonary Nodules in Ex Vivo Porcine Lungs , 2006, Investigative radiology.

[20]  R. Semelka,et al.  Magnetic resonance imaging of pulmonary parenchymal disease using a modified breath‐hold 3D gradient‐echo technique: Initial observations , 2002, Journal of magnetic resonance imaging : JMRI.

[21]  Jürgen Biederer,et al.  Lung morphology: fast MR imaging assessment with a volumetric interpolated breath-hold technique: initial experience with patients. , 2003, Radiology.

[22]  M Heller,et al.  [Sensitivity of MRI in detecting alveolar Infiltrates: Experimental studies]. , 2002, RoFo : Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin.

[23]  B. Partik [Prospective feasibility study of chest X-ray vs. thoracic MRI in breath-hold technique at an open low-field scanner]. , 2002, RoFo : Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin.

[24]  R R Edelman,et al.  MR imaging of pulmonary parenchyma with a half-Fourier single-shot turbo spin-echo (HASTE) sequence. , 1999, European journal of radiology.

[25]  Robin M Heidemann,et al.  Generalized autocalibrating partially parallel acquisitions (GRAPPA) , 2002, Magnetic resonance in medicine.

[26]  H. Hebestreit,et al.  Follow‐up of acute pulmonary complications in cystic fibrosis by magnetic resonance imaging: a pilot study * , 2004, Acta paediatrica.

[27]  J. Gieseke,et al.  Lung MRI at 3.0 T: a comparison of helical CT and high-field MRI in the detection of diffuse lung disease , 2005, European Radiology.

[28]  J. Debatin,et al.  Detection of pulmonary nodules using a 2D HASTE MR sequence: comparison with MDCT. , 2005, AJR. American journal of roentgenology.

[29]  T. Nägele,et al.  Fast Whole-Body Assessment of Metastatic Disease Using a Novel Magnetic Resonance Imaging System: Initial Experiences , 2005, Investigative radiology.

[30]  M. Deimling,et al.  Steady-state free precession projection MRI as a potential alternative to the conventional chest X-ray in pediatric patients with suspected pneumonia , 2002, European Radiology.

[31]  C. Ganter,et al.  MRI of the lung: Value of different turbo spin‐echo, single‐shot turbo spin‐echo, and 3D gradient‐echo pulse sequences for the detection of pulmonary metastases , 2007, Journal of magnetic resonance imaging : JMRI.

[32]  S. Schoenberg,et al.  High-Resolution Whole-Body Magnetic Resonance Image Tumor Staging With the Use of Parallel Imaging Versus Dual-Modality Positron Emission Tomography–Computed Tomography: Experience on a 32-Channel System , 2005, Investigative radiology.

[33]  W. Kersjes,et al.  Diagnosis of pulmonary metastases with turbo-SE MR imaging , 1997, European Radiology.

[34]  G Lutterbey,et al.  Initial experience with lung-MRI at 3.0T: Comparison with CT and clinical data in the evaluation of interstitial lung disease activity. , 2007, European journal of radiology.

[35]  G H Glover,et al.  Lung parenchyma: magnetic susceptibility in MR imaging. , 1991, Radiology.

[36]  J. Debatin,et al.  Whole-body dual-modality PET/CT and whole-body MRI for tumor staging in oncology. , 2003, JAMA.

[37]  Olaf Dietrich,et al.  Pulmonary abnormalities in immunocompromised patients: comparative detection with parallel acquisition MR imaging and thin-section helical CT. , 2006, Radiology.

[38]  Jürgen Biederer,et al.  Artificial thorax for MR imaging studies in porcine heart-lung preparations. , 2003, Radiology.

[39]  C. Kuhl,et al.  MR imaging of pneumonia in immunocompromised patients: comparison with helical CT. , 2000, AJR. American journal of roentgenology.