L ∞ -measure of non-exchangeability for bivariate extreme value and Archimax copulas

In the class of bivariate extreme value copulas, an upper bound is calculated for the measure of non-exchangeability μ∞ based on the L∞-norm distance between a copula C and its transpose Ct(x,y)=C(y,x). Copulas that are maximally non-exchangeable with respect to μ∞ are also determined. Moreover, similar upper bounds are given, respectively, for the class of all EV copulas having a fixed upper tail dependence coefficient and for the larger class of Archimax copulas.

[1]  Anne-Laure Fougères,et al.  Estimation of a Bivariate Extreme Value Distribution , 2000 .

[2]  H. Joe Multivariate models and dependence concepts , 1998 .

[3]  J. Segers,et al.  RANK-BASED INFERENCE FOR BIVARIATE EXTREME-VALUE COPULAS , 2007, 0707.4098.

[4]  C. Sempi,et al.  Copula Theory: An Introduction , 2010 .

[5]  Probabilistic Aspects of Multivariate Extremes , 1984 .

[6]  Carlo De Michele,et al.  Extremes in Nature : an approach using Copulas , 2007 .

[7]  Fabrizio Durante,et al.  Copula and semicopula transforms , 2006, Int. J. Math. Math. Sci..

[8]  Radko Mesiar,et al.  Asymmetric semilinear copulas , 2007, Kybernetika.

[9]  Harry Joe,et al.  Bivariate Threshold Methods for Extremes , 1992 .

[10]  Fabrizio Durante,et al.  On the construction of multivariate extreme value models via copulas , 2009 .

[11]  H. Joe Multivariate extreme value distributions , 1997 .

[12]  F. Durante,et al.  Non-exchangeability of negatively dependent random variables , 2010 .

[13]  R. Nelsen An Introduction to Copulas , 1998 .

[14]  E. Klement,et al.  Measures of non-exchangeability for bivariate random vectors , 2010 .

[15]  P. Embrechts,et al.  High Risk Scenarios and Extremes , 2007 .

[16]  Radko Mesiar,et al.  How non-symmetric can a copula be? , 2006 .

[17]  Jonathan A. Tawn,et al.  Bivariate extreme value theory: Models and estimation , 1988 .

[18]  C. Genest,et al.  Bivariate Distributions with Given Extreme Value Attractor , 2000 .

[19]  Claudia Klüppelberg,et al.  Bivariate extreme value distributions based on polynomial dependence functions , 2006 .

[20]  Christian Genest,et al.  A nonparametric estimation procedure for bivariate extreme value copulas , 1997 .

[21]  R. B. Nelson Extremes of nonexchangeability , 2007 .

[22]  M. Sklar Fonctions de repartition a n dimensions et leurs marges , 1959 .

[23]  Paul Embrechts,et al.  Quantitative Risk Management , 2011, International Encyclopedia of Statistical Science.

[24]  I. Olkin,et al.  A Multivariate Exponential Distribution , 1967 .

[25]  Ana Isabel Garralda Guillem Structure de dépendance des lois de valeurs extrêmes bivariées , 2000 .

[26]  J. D. T. Oliveira,et al.  The Asymptotic Theory of Extreme Order Statistics , 1979 .

[27]  Jan-Frederik Mai,et al.  Lévy-frailty copulas , 2009, J. Multivar. Anal..

[28]  P. Hall,et al.  Distribution and dependence-function estimation for bivariate extreme-value distributions , 2000 .

[29]  Renzo Rosso,et al.  Extremes in Nature , 2007 .

[30]  Fabrizio Durante,et al.  Componentwise Concave Copulas and Their Asymmetry , 2009, Kybernetika.

[31]  Christian Genest,et al.  “Understanding Relationships Using Copulas,” by Edward Frees and Emiliano Valdez, January 1998 , 1998 .

[32]  P. Embrechts,et al.  Quantitative Risk Management: Concepts, Techniques, and Tools , 2005 .

[33]  Eckhard Liebscher,et al.  Construction of asymmetric multivariate copulas , 2008 .

[34]  Shaun S. Wang,et al.  “Understanding Relationships Using Copulas,” Edward Frees and Emiliano Valdez, January 1998 , 1999 .

[35]  E Alvoni QUASI-CONCAVE COPULAS, ASYMMETRY AND TRANSFORMATIONS , 2007 .

[36]  Jonathan A. Tawn,et al.  Statistical Methods for Multivariate Extremes: An Application to Structural Design , 1994 .

[37]  H. Joe Multivariate extreme‐value distributions with applications to environmental data , 1994 .