Femtosecond laser ablation of metals: precise measurement and analytical model for crater profiles

Laser ablation of Cu, Al, Fe, Zn, Ni, Pb, and Mo by short pulse laser (800nm wavelength, 70fs pulse duration, 0.01-28 J/cm2 fluence range) in air was studied. Three different ablation thresholds were distinguished in all metals. The lowest ablation threshold was of one order of magnitude lower than the one observed previously. In the fluence range of 0.018-0.18 J/cm2 the ablation rate was ≈0.01 nm/pulse. A dependence of the threshold on the pulse duration was demonstrated in the range of 70 fs- 5 ps for cupper. As the laser pulse duration increased, the ablation threshold had the tendency to be higher. A periodic structure was observed at the bottom of the crater in all metals. The spacing d of the patterned structure was determined to be d=300±40 nm for 0.07 J/cm2 and d=600±40 nm for 0.22 J/cm2. The spacing depended on the laser fluence rather than on laser wavelength.