Coordinate-free Characterization of the Symmetry Classes of Elasticity Tensors

We formulate coordinate-free conditions for identifying all the symmetry classes of the elasticity tensor and prove that these conditions are both necessary and sufficient. Also, we construct a natural coordinate system of this tensor without the a priory knowledge of the symmetry axes.

[1]  J. Rychlewski A qualitative approach to Hooke's tensors. Part I , 2000 .

[2]  Stephen C. Cowin,et al.  EIGENTENSORS OF LINEAR ANISOTROPIC ELASTIC MATERIALS , 1990 .

[3]  Andrew N. Norris,et al.  Optimal orientation of anisotropic solids , 2006 .

[4]  A. Bona,et al.  Material symmetries of elasticity tensors , 2004 .

[5]  J. Rychlewski,et al.  On Hooke's law☆ , 1984 .

[6]  G. Piero,et al.  On the completeness of the crystallographic symmetries in the description of the symmetries of the elastic tensor , 1991 .

[7]  C. Chapman Fundamentals of Seismic Wave Propagation: Frontmatter , 2004 .

[8]  Barbara Romanowicz,et al.  Fundamentals of Seismic Wave Propagation , 2005 .

[9]  I. S. Sokolnikoff Mathematical theory of elasticity , 1946 .

[10]  Stephen C. Cowin,et al.  A new proof that the number of linear elastic symmetries is eight , 2001 .

[11]  G. Backus A geometrical picture of anisotropic elastic tensors , 1970 .

[12]  R. Huiskes,et al.  The Anisotropic Hooke's Law for Cancellous Bone and Wood , 1998, Journal Of Elasticity.

[13]  S. Forte,et al.  Symmetry classes and harmonic decomposition for photoelasticity tensors , 1997 .

[14]  S. Sutcliffe Spectral Decomposition of the Elasticity Tensor , 1992 .

[15]  K. Helbig Foundations of Anisotropy for Exploration Seismics , 1994 .

[16]  T. Ting Generalized Cowin–Mehrabadi theorems and a direct proof that the number of linear elastic symmetries is eight , 2003 .

[17]  S. Cowin,et al.  On the Identification of Material Symmetry for Anisotropic Elastic Materials , 1987 .

[18]  J. P. Boehler,et al.  On the polynomial invariants of the elasticity tensor , 1994 .

[19]  L. Walpole,et al.  Fourth-rank tensors of the thirty-two crystal classes: multiplication tables , 1984, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[20]  Stephen C. Cowin,et al.  The structure of the linear anisotropic elastic symmetries , 1992 .

[21]  Maurizio Vianello,et al.  Symmetry classes for elasticity tensors , 1996 .

[22]  J. Rychelewski Unconventional approach to linear elasticity , 1995 .

[23]  F. Fedorov Theory of Elastic Waves in Crystals , 1968 .