Convergence of the Yamabe flow on singular spaces with positive Yamabe constant

In this work, we study the convergence of the normalized Yamabe flow with positive Yamabe constant on a class of pseudo-manifolds that includes stratified spaces with iterated cone-edge metrics. We establish convergence under a low-energy condition. We also prove a concentration–compactness dichotomy, and investigate what the alternatives to convergence are. We end by investigating a non-convergent example due to Viaclovsky in more detail.

[1]  Jeff A. Viaclovsky Einstein metrics and Yamabe invariants of weighted projective spaces , 2012, 1206.1285.

[2]  A. Hanson,et al.  SELF-DUAL SOLUTIONS TO EUCLIDEAN GRAVITY , 1979 .

[3]  N. Roidos Conic manifolds under the Yamabe flow , 2018, Journal of Evolution Equations.

[4]  N. Varopoulos,et al.  Hardy-Littlewood theory for semigroups , 1985 .

[5]  G. Carron,et al.  The Yamabe problem on Dirichlet spaces , 2013, 1306.4373.

[6]  Simon Brendle,et al.  Convergence of the Yamabe flow for arbitrary initial energy , 2005 .

[7]  R. Mazzeo,et al.  Analytic Torsion on Manifolds with Edges , 2011, 1103.0448.

[8]  Jeff A. Viaclovsky Monopole metrics and the orbifold Yamabe problem , 2010, 1002.2119.

[9]  Michael Struwe,et al.  A global compactness result for elliptic boundary value problems involving limiting nonlinearities , 1984 .

[10]  Paolo Piazza,et al.  The signature package on Witt spaces , 2011, 1112.0989.

[11]  R. Schoen Conformal deformation of a Riemannian metric to constant scalar curvature , 1984 .

[12]  E. Stein Topics in Harmonic Analysis Related to the Littlewood-Paley Theory. , 1970 .

[13]  M. Gursky Compactness of conformal metrics with integral bounds on curvature , 1993 .

[14]  G. Carron Inégalité de Sobolev et volume asymptotique , 2011, 1107.5887.

[15]  Boris Vertman,et al.  Long-time existence of the edge Yamabe flow , 2016, Journal of the Mathematical Society of Japan.

[16]  G. Carron,et al.  A∞-weights and compactness of conformal metrics under Ln∕2 curvature bounds , 2018, Analysis & PDE.

[17]  Long-time existence of Yamabe flow on singular spaces with positive Yamabe constant , 2020, 2006.01544.

[18]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[19]  W. Ballmann Lectures on Kähler Manifolds , 2006 .

[20]  P. Topping,et al.  Existence of Ricci Flows of Incomplete Surfaces , 2010, 1007.3146.

[21]  Ilaria Mondello An Obata singular theorem for stratified spaces , 2015, 1511.08093.

[22]  Emmanuel Hebey,et al.  Sobolev Spaces on Riemannian Manifolds , 1996 .

[23]  Gap Theorems for Locally Conformally Flat Manifolds , 2012, 1209.5062.

[24]  A. Lunardi Analytic Semigroups and Optimal Regularity in Parabolic Problems , 2003 .

[25]  R. Ye Global existence and convergence of Yamabe flow , 1994 .

[26]  G. Carron,et al.  The Yamabe problem on stratified spaces , 2012, 1210.8054.

[27]  Li Ma,et al.  Extending Yamabe flow on complete Riemannian manifolds , 2012 .

[28]  Boris Vertman,et al.  Yamabe flow on manifolds with edges , 2011, 1107.5350.

[29]  T. Aubin Equations differentielles non lineaires et probleme de Yamabe concernant la courbure scalaire , 1976 .

[30]  Michael Struwe,et al.  Variational methods: Applications to nonlinear partial differential equations and Hamiltonian systems , 1990 .

[31]  Hidehiko Yamabe On a deformation of Riemannian structures on compact manifolds , 1960 .

[32]  Simon Brendle,et al.  Convergence of the Yamabe flow in dimension 6 and higher , 2007 .

[33]  Hartmut Schwetlick,et al.  Convergence of the Yamabe flow for ``large'' energies , 2003 .

[34]  Emmanuel Hebey Compactness and Stability for Nonlinear Elliptic Equations , 2014 .

[35]  J. Nash Continuity of Solutions of Parabolic and Elliptic Equations , 1958 .

[36]  Neil S. Trudinger,et al.  Remarks concerning the conformal deformation of riemannian structures on compact manifolds , 1968 .

[37]  C. Ketterer,et al.  Stratified spaces and synthetic Ricci curvature bounds , 2018, Annales de l'Institut Fourier.

[38]  P. Topping,et al.  Ricci flow of negatively curved incomplete surfaces , 2009, 0906.3309.

[39]  R. Nagel,et al.  A Short Course on Operator Semigroups , 2006 .

[40]  Kazuhiro Kuwae,et al.  Convergence of spectral structures: a functional analytic theory and its applications to spectral geometry , 2003 .

[41]  Yamabe Flow on Non-compact Manifolds with Unbounded Initial Curvature , 2018, The Journal of Geometric Analysis.