Multi-microjoule, MHz repetition rate Ti:sapphire ultrafast regenerative amplifier system.

We demonstrate a cryogenically cooled Ti:sapphire ultrafast regenerative amplifier laser system producing >20 μJ energies at 50 kHz, >12 μJ at 200 kHz and >3.5 μJ at 1MHz with repetition rates continuously tunable from 50 kHz up to 1.7 MHz in a footprint of only 60x180 cm². This laser uses down-chirped pulse amplification employing a grism stretcher and a glass-block compressor, achieving sub-60-fs pulse duration. This laser represents a several-times improvement in repetition-rate and average power over past Ti:sapphire-based ultrafast lasers in this class. We discuss the unique challenges and solutions for this laser system. This laser system has wide applications especially in ultrafast photoemission, nonlinear imaging and spectroscopy, as well as for micro/nano-machining and ultrafast laser therapy and surgery.

[1]  T. Norris,et al.  Femtosecond pulse amplification at 250 kHz with a Ti:sapphire regenerative amplifier and application to continuum generation. , 1992, Optics letters.

[2]  D. Jonas Two-dimensional femtosecond spectroscopy. , 2003, Annual review of physical chemistry.

[3]  A. Giesen,et al.  Ultrafast thin-disk Yb:KY(WO4)2 regenerative amplifier with a 200-kHz repetition rate. , 2004, Optics letters.

[4]  Sterling Backus,et al.  11-W average power Ti:sapphire amplifier system using downchirped pulse amplification. , 2004, Optics letters.

[5]  Mehmet Fatih Yanik,et al.  Neurosurgery: Functional regeneration after laser axotomy , 2004, Nature.

[6]  A. Zewail,et al.  Scanning ultrafast electron microscopy , 2010, Proceedings of the National Academy of Sciences.

[7]  C. Hönninger,et al.  300 kHz femtosecond Yb:KGW regenerative amplifier using an acousto–optic Q-switch , 2006 .

[8]  P. Grangier,et al.  Femtosecond Ti:sapphire cryogenic amplifier with high gain and MHz repetition rate. , 2007, Optics express.

[9]  S. Matsubara,et al.  LD pumped Yb:YAG regenerative amplifier for high average power short-pulse generation , 2006, 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference.

[10]  W. H. Lowdermilk,et al.  The multipass amplifier: Theory and numerical analysis , 1980 .

[11]  M M Murnane,et al.  High-efficiency, single-stage 7-kHz high-average-power ultrafast laser system. , 2001, Optics letters.

[12]  Andy Steinmann,et al.  High-peak-power pulses from a cavity-dumped Yb:KY(WO4)2 oscillator. , 2005, Optics letters.

[13]  M M Murnane,et al.  Generation of 11-fs pulses from a self-mode-locked Ti:sapphire laser. , 1993, Optics letters.

[14]  J G Fujimoto,et al.  Cavity-dumped femtosecond Kerr-lens mode-locked Ti:A1(2)O(3)laser. , 1993, Optics letters.

[15]  M. Murnane,et al.  Positive-dispersion cavity-dumped Ti: sapphire laser oscillator and its application to white light generation. , 2006, Optics express.

[16]  M Hanna,et al.  Stretcher-free high energy nonlinear amplification of femtosecond pulses in rod-type fibers. , 2008, Optics letters.

[17]  Andrew D. Chisholm,et al.  Nerve regeneration in C. elegans after femtosecond laser axotomy , 2005, European Conference on Biomedical Optics.

[18]  Adela Ben-Yakar,et al.  Femtosecond laser nanoaxotomy lab-on-a-chip for in vivo nerve regeneration studies , 2008, Nature Methods.

[19]  J. Rothhardt,et al.  A 325-W-Average-Power Fiber CPA System Delivering Sub-400 fs Pulses , 2009, IEEE Journal of Selected Topics in Quantum Electronics.

[20]  A. Leitenstorfer,et al.  12-fs pulses from a continuous-wave-pumped 200-nJ Ti:sapphire amplifier at a variable repetition rate as high as 4 MHz. , 2003, Optics letters.

[21]  F. Krausz,et al.  Single-electron pulses for ultrafast diffraction , 2010, Proceedings of the National Academy of Sciences.

[22]  B E Bouma,et al.  Low-repetition-rate high-peak-power Kerr-lens mode-locked TiAl(2)O(3) laser with a multiple-pass cavity. , 1999, Optics letters.

[23]  E. Mazur,et al.  Femtosecond laser micromachining in transparent materials , 2008 .