Supersaturation Problem for the Bowtie

The Tur\'an function $ex(n,F)$ denotes the maximal number of edges in an $F$-free graph on $n$ vertices. We consider the function $h_F(n,q)$, the minimal number of copies of $F$ in a graph on $n$ vertices with $ex(n,F)+q$ edges. The value of $h_F(n,q)$ has been extensively studied when $F$ is bipartite or colour-critical. In this paper we investigate the simplest remaining graph $F$, namely, two triangles sharing a vertex, and establish the asymptotic value of $h_F(n,q)$ for $q=o(n^2)$.

[1]  J. Moon On the Number of Complete Subgraphs of a Graph , 1965, Canadian Mathematical Bulletin.

[2]  Alexander A. Razborov,et al.  On the Minimal Density of Triangles in Graphs , 2008, Combinatorics, Probability and Computing.

[3]  William T. Trotter,et al.  Some theorems on graphs and posets , 1976, Discret. Math..

[4]  Paul Erdös,et al.  On a theorem of Rademacher-Turán , 1962 .

[5]  B. Szegedy,et al.  On the logarithimic calculus and Sidorenko's conjecture , 2011, 1107.1153.

[6]  Oleg Pikhurko,et al.  Supersaturation problem for color-critical graphs , 2017, J. Comb. Theory, Ser. B.

[7]  Ki Hang Kim,et al.  On a problem of Turán , 1983 .

[8]  M. Simonovits,et al.  On the number of complete subgraphs of a graph II , 1983 .

[9]  Jaroslav Nesetril,et al.  Ramsey properties and extending partial automorphisms for classes of finite structures , 2017, ArXiv.

[10]  E. A. Nordhaus,et al.  Triangles in an Ordinary Graph , 1963, Canadian Journal of Mathematics.

[11]  P. Erdos,et al.  SOME RECENT RESULTS ON EXTREMAL PROBLEMS IN GRAPH THEORY (Results) , 2002 .

[12]  Dhruv Mubayi Counting substructures I: color critical graphs , 2009 .

[13]  M. Simonovits,et al.  Szemeredi''s Regularity Lemma and its applications in graph theory , 1995 .

[14]  D. Gale A theorem on flows in networks , 1957 .

[15]  Miklós Simonovits,et al.  Supersaturated graphs and hypergraphs , 1983, Comb..

[16]  H. Ryser Combinatorial Properties of Matrices of Zeros and Ones , 1957, Canadian Journal of Mathematics.

[17]  Christian Reiher,et al.  The clique density theorem , 2012, 1212.2454.

[18]  Péter Komjáth Some remarks on universal graphs , 1999, Discret. Math..

[19]  P. Erdös On an extremal problem in graph theory , 1970 .

[20]  D. Conlon,et al.  An Approximate Version of Sidorenko’s Conjecture , 2010, 1004.4236.

[21]  A. Goodman On Sets of Acquaintances and Strangers at any Party , 1959 .

[22]  S. Shelah,et al.  Universal Graphs with Forbidden Subgraphs and Algebraic Closure , 1998, math/9809202.

[23]  J. Sheehan,et al.  On the number of complete subgraphs contained in certain graphs , 1981, J. Comb. Theory, Ser. B.

[24]  Alexander Sidorenko,et al.  A correlation inequality for bipartite graphs , 1993, Graphs Comb..

[25]  B. Szegedy An information theoretic approach to Sidorenko's conjecture , 2014, 1406.6738.

[26]  Jeong Han Kim,et al.  Two Approaches to Sidorenko's Conjecture , 2013, 1310.4383.

[27]  Vladimir Nikiforov,et al.  The number of cliques in graphs of given order and size , 2007, 0710.2305.

[28]  Jaroslav Nesetril,et al.  Bowtie-free graphs have a Ramsey lift , 2014, Adv. Appl. Math..

[29]  Hamed Hatami Graph norms and Sidorenko’s conjecture , 2008, 0806.0047.

[30]  David C. Fisher Lower bounds on the number of triangles in a graph , 1989, J. Graph Theory.