Cyclodextrin Derivatives as Chiral Supramolecular Receptors for Enantioselective Sensing
暂无分享,去创建一个
[1] H. Chan,et al. Chiral discrimination of enantiomers with a self-assembled monolayer of functionalized β-cyclodextrins on Au surfaces , 2002 .
[2] M. Riekkola,et al. Chiral separation by capillary electrophoresis in nonaqueous medium. , 2004, Methods in molecular biology.
[3] N. Belkova,et al. Diverse world of unconventional hydrogen bonds. , 2005, Accounts of chemical research.
[4] H. Aboul‐Enein,et al. A POTENTIOMETRIC, ENANTIOSELECTIVE MEMBRANE ELECTRODE FOR S-RAMIPRIL ASSAY , 1999 .
[5] S. Shinkai,et al. Chiral Recognition of α-Amino Acid Derivatives by a Steroidal Crown Ether at the Air-Water Interface , 1994 .
[6] S. Lincoln,et al. Chiral discrimination by modified cyclodextrins , 1997 .
[7] H. Chan,et al. Durable chiral sensor based on quartz crystal microbalance using self‐assembled monolayer of permethylated β‐cyclodextrin , 2003 .
[8] Xiwen He,et al. Design, synthesis, and enantiomeric recognition of dicyclodipeptide-bearing calix[4]arenes: a promising family for chiral gas sensor coatings , 2002 .
[9] M. Moreno-Bondi,et al. Frontiers in chemical sensors : Novel principles and techniques , 2005 .
[10] R. M. Izatt,et al. Enantiomer-selectivity of ion-selective electrodes based on a chiral crown-ether ionophore , 1997 .
[11] D. Reinhoudt,et al. Writing patterns of molecules on molecular printboards. , 2004, Angewandte Chemie.
[12] J. Szejtli. Utilization of cyclodextrins in industrial products andprocesses , 1997 .
[13] A. Ogston. Interpretation of Experiments on Metabolic processes, using Isotopic Tracer Elements , 1948, Nature.
[14] M. Pietraszkiewicz,et al. Monolayers of Chiral Calix[4]Resorcinarenes: Surface Pressure and Surface Potential Studies , 1998 .
[15] R. Boyd,et al. Experimental evidence of magnetochiral interaction in Pasteur's tartrates , 2004 .
[16] M. Pietraszkiewicz,et al. pH dependent enantiometric recognition of amino acids by mannich-type calix([4]resorcinarenes in langumuir monolayers. , 1999 .
[17] H. Aboul‐Enein,et al. S-perindopril assay using a potentiometric, enantioselective membrane electrode. , 1999, Chirality.
[18] Lee Brammer,et al. Developments in inorganic crystal engineering. , 2004, Chemical Society reviews.
[19] M. Hegner,et al. A Cyclodextrin Self-Assembled Monolayer (SAM) Based Surface Plasmon Resonance (SPR) Sensor for Enantioselective Analysis of Thyroxine , 2005 .
[20] C J Pedersen,et al. The discovery of crown ethers , 1988, Science.
[21] R. M. Izatt,et al. Enantiomeric Recognition of Amine Compounds by Chiral Macrocyclic Receptors. , 1997, Chemical reviews.
[22] R Bhushan,et al. Chiral separations. , 1997, Biomedical chromatography : BMC.
[23] K. Freudenberg,et al. Hydrolyse und Acetolyse der Stärke und der Schardinger‐Dextrine , 1936 .
[24] J. Szejtli,et al. Past, present and futute of cyclodextrin research , 2004 .
[25] H. Kitano,et al. Regio- and Stereoselective Complexation by a Self-Assembled Monolayer of Thiolated Cyclodextrin on a Gold Electrode , 1997 .
[26] H. Kitano,et al. Molecular Recognition by Self-Assembled Monolayers of Cyclodextrin on Ag† , 1997 .
[27] K. A. Connors,et al. The Stability of Cyclodextrin Complexes in Solution. , 1997, Chemical reviews.
[28] H. Aboul‐Enein,et al. A new construction for a potentiometric, enantioselective membrane electrode--its utilization to the S-captopril assay. , 1999, Talanta.
[29] C. Wolf. Stereolabile chiral compounds: analysis by dynamic chromatography and stopped-flow methods. , 2005, Chemical Society reviews.
[30] G. Desiraju. The C-H×××O Hydrogen Bond: Structural Implications and Supramolecular Design , 1996 .
[31] V. Schurig. Enantiomer separation by gas chromatography on chiral stationary phases , 1994 .
[32] Yu Liu,et al. Synthesis of Novel β‐Cyclodextrin and Calixarene Derivatives and Their Use in Gas Sensing on the Basis of Molecular Recognition , 2002 .
[33] D. Sherrington,et al. Self-assembly in synthetic macromolecular systems via multiple hydrogen bonding interactions , 2001 .
[34] R. Kataky,et al. Potentiometric, enantioselective sensors for alkyl and aryl ammonium ions of pharmaceutical significance, based on lipophilic cyclodextrins. , 1995, Scandinavian journal of clinical and laboratory investigation.
[35] Walter Kauzmann,et al. The Structure and Properties of Water , 1969 .
[36] V. Böhmer,et al. Chirality in Calixarenes and Calixarene Assemblies , 2001 .
[37] M. Lämmerhofer. Chiral separations by capillary electromigration techniques in nonaqueous media. II. Enantioselective nonaqueous capillary electrochromatography. , 2005, Journal of chromatography. A.
[38] KimuraKeiichi,et al. SIMPLE EVALUATION OF ENANTIOMER-SELECTIVITY OF CROWN ETHER USING MEMBRANE ELECTRODE , 1980 .
[39] M. Pietraszkiewicz,et al. pH Dependent Enantioselection of Amino Acids by Phosphorous-Containing Calix[4] resorcinarene in Langmuir Monolayers , 1999 .
[40] R. Mehvar,et al. Chirality in Drug Design and Development , 2007 .
[41] Tomohiko Yamaguchi,et al. Enantiomer-selective membrane electrode for amino acid methyl esters , 1987 .
[42] J. Szejtli. Introduction and General Overview of Cyclodextrin Chemistry. , 1998, Chemical reviews.
[43] A. Hierlemann,et al. Effective use of molecular recognition in gas sensing: results from acoustic wave and in situ FT-IR measurements. , 1999, Analytical chemistry.
[44] M. Lindström,et al. CHIRAL DISCRIMINATION USING A QUARTZ CRYSTAL MICROBALANCE AND COMPARISON WITH GAS CHROMATOGRAPHIC RETENTION DATA , 1997 .
[45] H. Aboul‐Enein,et al. Detection of S‐Enantiomers of Cilazapril, Pentopril and Trandolapril Using a Potentiometric, Enantioselective Membrane Electrode , 1999 .
[46] Boukamp,et al. Host-guest interactions at self-assembled monolayers of cyclodextrins on gold , 2000, Chemistry.
[47] C. Allender,et al. Molecular imprinted polymer sensors: implications for therapeutics. , 2005, Advanced drug delivery reviews.
[48] F. Cramer,et al. Über Einschlußverbindungen, XV. Spaltung von Racematen mit Cyclodextrinen , 1959 .
[49] J. Kovács,et al. One step synthesis of new urea-linked β-cyclodextrin dimers , 1996 .
[50] A. Del Rio,et al. Chiral liquid chromatography contribution to the determination of the absolute configuration of enantiomers. , 2004, Journal of chromatography. A.
[51] C. Schalley. Molecular recognition and supramolecular chemistry in the gas phase. , 2001, Mass spectrometry reviews.
[52] K. Ozoemena,et al. Enantioanalysis of S-perindopril using different cyclodextrin-based potentiometric sensors , 2005 .
[53] Takamichi Nakamoto,et al. Discrimination of aromatic optical isomers using quartz-resonator sensors , 1995 .
[54] H. Aboul‐Enein,et al. A New Construction for Potentiometric, Enantioselective Membrane Electrodes, and Use for L-Proline Assay. , 1998 .
[55] T. K. Natishan. Recent Progress in the Analysis of Pharmaceuticals by Capillary Electrophoresis , 2005 .
[56] P. Strong. Encyclopedia of Supramolecular Chemistry , 2005 .
[57] H. S. Wolff,et al. iRun: Horizontal and Vertical Shape of a Region-Based Graph Compression , 2022, Sensors.
[58] R. Kataky,et al. Functionalized α-cyclodextrins as potentiometric chiral sensors , 1992 .
[59] Boris Mizaikoff,et al. Molecularly imprinted polymers—potential and challenges in analytical chemistry , 2005, Analytica Chimica Acta.
[60] J. Veuthey. Capillary electrophoresis in pharmaceutical and biomedical analysis , 2005, Analytical and bioanalytical chemistry.
[61] W. Simon,et al. COMMENT ON THE PAPER “SIMPLE EVALUATION OF ENANTIOMER-SELECTIVITY OF CROWN ETHER USING MEMBRANE ELECTRODE” BY Y. YASAKA ET AL. , 1981 .
[62] V. T. D'Souza,et al. Methods for Selective Modifications of Cyclodextrins. , 1998, Chemical reviews.
[63] Gautam R Desiraju,et al. Hydrogen bridges in crystal engineering: interactions without borders. , 2002, Accounts of chemical research.
[64] R. Kataky,et al. Chiral sensors based on lipophilic cyclodextrins: interrogation of enantioselectivity by combined NMR, structural correlation and electrode response studies , 1994 .
[65] S. Alvarez,et al. LIGAND ORIENTATION EFFECTS ON METAL-METAL, LIGAND-LIGAND AND METAL-LIGAND INTERACTIONS , 1999 .
[66] J. Szejtli. Past, Present, and Future of Cyclodextrin Research , 2005 .
[67] Patrick W. Fowler,et al. Theoretical studies of van der Waals molecules and intermolecular forces , 1988 .
[68] H. Kitano,et al. Stereoselective inclusion of DOPA derivatives by a self-assembled monolayer of thiolated cyclodextrin on a gold electrode , 1999 .
[69] M. Schmid,et al. Recent advances in chiral separation principles in capillary electrophoresis and capillary electrochromatography , 2004, Electrophoresis.
[70] H. Schneider,et al. NMR Studies of Cyclodextrins and Cyclodextrin Complexes. , 1998, Chemical reviews.
[71] V. Schurig. Practice and theory of enantioselective complexation gas chromatography. , 2002, Journal of chromatography. A.
[72] J. Behr. The Lock-and-key principle : the state of the art -- 100 years on , 1994 .
[73] K. Kano. MECHANISMS FOR CHIRAL RECOGNITION BY CYCLODEXTRINS , 1997 .
[74] M. Hegner,et al. Enantioselective recognition of phenylalanine by a chiral amphiphilic macrocycle at the air-water interface: a copper-mediated mechanism. , 2005, Langmuir : the ACS journal of surfaces and colloids.
[75] C. Nuckolls,et al. Using hydrogen bonds to direct the assembly of crowded aromatics. , 2004, Angewandte Chemie.
[76] J. Joly,et al. Enantiomeric recognition of amino acids by amphiphilic crown ethers in Langmuir monolayers. , 2004, Langmuir : the ACS journal of surfaces and colloids.
[77] K. Kano,et al. General Mechanism for Chiral Recognition by Native and Modified Cyclodextrins , 2002 .
[78] W. Rosenstiel,et al. Chiral discrimination of limonene by use of β-cyclodextrin-coated quartz-crystal-microbalances (QCMs) and data evaluation by artificial neuronal networks , 2001, Fresenius' journal of analytical chemistry.
[79] W. M. Leevy,et al. Crown ethers: sensors for ions and molecular scaffolds for materials and biological models. , 2004, Chemical reviews.
[80] A. Hierlemann,et al. Chiral discrimination of inhalation anesthetics and methyl propionates by thickness shear mode resonators: new insights into the mechanisms of enantioselectivity by cyclodextrins. , 1997, Analytical chemistry.