Cyclodextrin Derivatives as Chiral Supramolecular Receptors for Enantioselective Sensing

In view of the chiral nature of many bio-molecules (and all bio-macromolecules), most of therapeutically active compounds which target these molecules need to be chiral and “good handed” to be effective. In addition to asymmetric synthetic and separation methodologies, enantioselective chemical sensors, able to distinguish between two enantiomers of the same molecule, are of relevance. In order to design these sensing tools, two major classes of enantioselective layers have been developed. The first is based on molecularly imprinted polymers which are produced (polymerized) in the presence of their target, thus the polymeric material keep in “memory” the size and the shape of this molecule and the system could be used for sensing (not reviewed here). The second approach makes use of sensitive layers containing chiral macrocyclic receptors able of stereoselective molecular recognition; these receptors are mainly based on cyclodextrins. In this contribution, are reviewed achievements in the use of native or chemically modified cyclodextrins for chiral sensing purposes (at interfaces). Potentialities of other chiral macrocycles based on calixarenes, calix-resorcinarenes or crown-ethers as supramolecular receptors for enantioselective sensing are discussed.

[1]  H. Chan,et al.  Chiral discrimination of enantiomers with a self-assembled monolayer of functionalized β-cyclodextrins on Au surfaces , 2002 .

[2]  M. Riekkola,et al.  Chiral separation by capillary electrophoresis in nonaqueous medium. , 2004, Methods in molecular biology.

[3]  N. Belkova,et al.  Diverse world of unconventional hydrogen bonds. , 2005, Accounts of chemical research.

[4]  H. Aboul‐Enein,et al.  A POTENTIOMETRIC, ENANTIOSELECTIVE MEMBRANE ELECTRODE FOR S-RAMIPRIL ASSAY , 1999 .

[5]  S. Shinkai,et al.  Chiral Recognition of α-Amino Acid Derivatives by a Steroidal Crown Ether at the Air-Water Interface , 1994 .

[6]  S. Lincoln,et al.  Chiral discrimination by modified cyclodextrins , 1997 .

[7]  H. Chan,et al.  Durable chiral sensor based on quartz crystal microbalance using self‐assembled monolayer of permethylated β‐cyclodextrin , 2003 .

[8]  Xiwen He,et al.  Design, synthesis, and enantiomeric recognition of dicyclodipeptide-bearing calix[4]arenes: a promising family for chiral gas sensor coatings , 2002 .

[9]  M. Moreno-Bondi,et al.  Frontiers in chemical sensors : Novel principles and techniques , 2005 .

[10]  R. M. Izatt,et al.  Enantiomer-selectivity of ion-selective electrodes based on a chiral crown-ether ionophore , 1997 .

[11]  D. Reinhoudt,et al.  Writing patterns of molecules on molecular printboards. , 2004, Angewandte Chemie.

[12]  J. Szejtli Utilization of cyclodextrins in industrial products andprocesses , 1997 .

[13]  A. Ogston Interpretation of Experiments on Metabolic processes, using Isotopic Tracer Elements , 1948, Nature.

[14]  M. Pietraszkiewicz,et al.  Monolayers of Chiral Calix[4]Resorcinarenes: Surface Pressure and Surface Potential Studies , 1998 .

[15]  R. Boyd,et al.  Experimental evidence of magnetochiral interaction in Pasteur's tartrates , 2004 .

[16]  M. Pietraszkiewicz,et al.  pH dependent enantiometric recognition of amino acids by mannich-type calix([4]resorcinarenes in langumuir monolayers. , 1999 .

[17]  H. Aboul‐Enein,et al.  S-perindopril assay using a potentiometric, enantioselective membrane electrode. , 1999, Chirality.

[18]  Lee Brammer,et al.  Developments in inorganic crystal engineering. , 2004, Chemical Society reviews.

[19]  M. Hegner,et al.  A Cyclodextrin Self-Assembled Monolayer (SAM) Based Surface Plasmon Resonance (SPR) Sensor for Enantioselective Analysis of Thyroxine , 2005 .

[20]  C J Pedersen,et al.  The discovery of crown ethers , 1988, Science.

[21]  R. M. Izatt,et al.  Enantiomeric Recognition of Amine Compounds by Chiral Macrocyclic Receptors. , 1997, Chemical reviews.

[22]  R Bhushan,et al.  Chiral separations. , 1997, Biomedical chromatography : BMC.

[23]  K. Freudenberg,et al.  Hydrolyse und Acetolyse der Stärke und der Schardinger‐Dextrine , 1936 .

[24]  J. Szejtli,et al.  Past, present and futute of cyclodextrin research , 2004 .

[25]  H. Kitano,et al.  Regio- and Stereoselective Complexation by a Self-Assembled Monolayer of Thiolated Cyclodextrin on a Gold Electrode , 1997 .

[26]  H. Kitano,et al.  Molecular Recognition by Self-Assembled Monolayers of Cyclodextrin on Ag† , 1997 .

[27]  K. A. Connors,et al.  The Stability of Cyclodextrin Complexes in Solution. , 1997, Chemical reviews.

[28]  H. Aboul‐Enein,et al.  A new construction for a potentiometric, enantioselective membrane electrode--its utilization to the S-captopril assay. , 1999, Talanta.

[29]  C. Wolf Stereolabile chiral compounds: analysis by dynamic chromatography and stopped-flow methods. , 2005, Chemical Society reviews.

[30]  G. Desiraju The C-H×××O Hydrogen Bond: Structural Implications and Supramolecular Design , 1996 .

[31]  V. Schurig Enantiomer separation by gas chromatography on chiral stationary phases , 1994 .

[32]  Yu Liu,et al.  Synthesis of Novel β‐Cyclodextrin and Calixarene Derivatives and Their Use in Gas Sensing on the Basis of Molecular Recognition , 2002 .

[33]  D. Sherrington,et al.  Self-assembly in synthetic macromolecular systems via multiple hydrogen bonding interactions , 2001 .

[34]  R. Kataky,et al.  Potentiometric, enantioselective sensors for alkyl and aryl ammonium ions of pharmaceutical significance, based on lipophilic cyclodextrins. , 1995, Scandinavian journal of clinical and laboratory investigation.

[35]  Walter Kauzmann,et al.  The Structure and Properties of Water , 1969 .

[36]  V. Böhmer,et al.  Chirality in Calixarenes and Calixarene Assemblies , 2001 .

[37]  M. Lämmerhofer Chiral separations by capillary electromigration techniques in nonaqueous media. II. Enantioselective nonaqueous capillary electrochromatography. , 2005, Journal of chromatography. A.

[38]  KimuraKeiichi,et al.  SIMPLE EVALUATION OF ENANTIOMER-SELECTIVITY OF CROWN ETHER USING MEMBRANE ELECTRODE , 1980 .

[39]  M. Pietraszkiewicz,et al.  pH Dependent Enantioselection of Amino Acids by Phosphorous-Containing Calix[4] resorcinarene in Langmuir Monolayers , 1999 .

[40]  R. Mehvar,et al.  Chirality in Drug Design and Development , 2007 .

[41]  Tomohiko Yamaguchi,et al.  Enantiomer-selective membrane electrode for amino acid methyl esters , 1987 .

[42]  J. Szejtli Introduction and General Overview of Cyclodextrin Chemistry. , 1998, Chemical reviews.

[43]  A. Hierlemann,et al.  Effective use of molecular recognition in gas sensing: results from acoustic wave and in situ FT-IR measurements. , 1999, Analytical chemistry.

[44]  M. Lindström,et al.  CHIRAL DISCRIMINATION USING A QUARTZ CRYSTAL MICROBALANCE AND COMPARISON WITH GAS CHROMATOGRAPHIC RETENTION DATA , 1997 .

[45]  H. Aboul‐Enein,et al.  Detection of S‐Enantiomers of Cilazapril, Pentopril and Trandolapril Using a Potentiometric, Enantioselective Membrane Electrode , 1999 .

[46]  Boukamp,et al.  Host-guest interactions at self-assembled monolayers of cyclodextrins on gold , 2000, Chemistry.

[47]  C. Allender,et al.  Molecular imprinted polymer sensors: implications for therapeutics. , 2005, Advanced drug delivery reviews.

[48]  F. Cramer,et al.  Über Einschlußverbindungen, XV. Spaltung von Racematen mit Cyclodextrinen , 1959 .

[49]  J. Kovács,et al.  One step synthesis of new urea-linked β-cyclodextrin dimers , 1996 .

[50]  A. Del Rio,et al.  Chiral liquid chromatography contribution to the determination of the absolute configuration of enantiomers. , 2004, Journal of chromatography. A.

[51]  C. Schalley Molecular recognition and supramolecular chemistry in the gas phase. , 2001, Mass spectrometry reviews.

[52]  K. Ozoemena,et al.  Enantioanalysis of S-perindopril using different cyclodextrin-based potentiometric sensors , 2005 .

[53]  Takamichi Nakamoto,et al.  Discrimination of aromatic optical isomers using quartz-resonator sensors , 1995 .

[54]  H. Aboul‐Enein,et al.  A New Construction for Potentiometric, Enantioselective Membrane Electrodes, and Use for L-Proline Assay. , 1998 .

[55]  T. K. Natishan Recent Progress in the Analysis of Pharmaceuticals by Capillary Electrophoresis , 2005 .

[56]  P. Strong Encyclopedia of Supramolecular Chemistry , 2005 .

[57]  H. S. Wolff,et al.  iRun: Horizontal and Vertical Shape of a Region-Based Graph Compression , 2022, Sensors.

[58]  R. Kataky,et al.  Functionalized α-cyclodextrins as potentiometric chiral sensors , 1992 .

[59]  Boris Mizaikoff,et al.  Molecularly imprinted polymers—potential and challenges in analytical chemistry , 2005, Analytica Chimica Acta.

[60]  J. Veuthey Capillary electrophoresis in pharmaceutical and biomedical analysis , 2005, Analytical and bioanalytical chemistry.

[61]  W. Simon,et al.  COMMENT ON THE PAPER “SIMPLE EVALUATION OF ENANTIOMER-SELECTIVITY OF CROWN ETHER USING MEMBRANE ELECTRODE” BY Y. YASAKA ET AL. , 1981 .

[62]  V. T. D'Souza,et al.  Methods for Selective Modifications of Cyclodextrins. , 1998, Chemical reviews.

[63]  Gautam R Desiraju,et al.  Hydrogen bridges in crystal engineering: interactions without borders. , 2002, Accounts of chemical research.

[64]  R. Kataky,et al.  Chiral sensors based on lipophilic cyclodextrins: interrogation of enantioselectivity by combined NMR, structural correlation and electrode response studies , 1994 .

[65]  S. Alvarez,et al.  LIGAND ORIENTATION EFFECTS ON METAL-METAL, LIGAND-LIGAND AND METAL-LIGAND INTERACTIONS , 1999 .

[66]  J. Szejtli Past, Present, and Future of Cyclodextrin Research , 2005 .

[67]  Patrick W. Fowler,et al.  Theoretical studies of van der Waals molecules and intermolecular forces , 1988 .

[68]  H. Kitano,et al.  Stereoselective inclusion of DOPA derivatives by a self-assembled monolayer of thiolated cyclodextrin on a gold electrode , 1999 .

[69]  M. Schmid,et al.  Recent advances in chiral separation principles in capillary electrophoresis and capillary electrochromatography , 2004, Electrophoresis.

[70]  H. Schneider,et al.  NMR Studies of Cyclodextrins and Cyclodextrin Complexes. , 1998, Chemical reviews.

[71]  V. Schurig Practice and theory of enantioselective complexation gas chromatography. , 2002, Journal of chromatography. A.

[72]  J. Behr The Lock-and-key principle : the state of the art -- 100 years on , 1994 .

[73]  K. Kano MECHANISMS FOR CHIRAL RECOGNITION BY CYCLODEXTRINS , 1997 .

[74]  M. Hegner,et al.  Enantioselective recognition of phenylalanine by a chiral amphiphilic macrocycle at the air-water interface: a copper-mediated mechanism. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[75]  C. Nuckolls,et al.  Using hydrogen bonds to direct the assembly of crowded aromatics. , 2004, Angewandte Chemie.

[76]  J. Joly,et al.  Enantiomeric recognition of amino acids by amphiphilic crown ethers in Langmuir monolayers. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[77]  K. Kano,et al.  General Mechanism for Chiral Recognition by Native and Modified Cyclodextrins , 2002 .

[78]  W. Rosenstiel,et al.  Chiral discrimination of limonene by use of β-cyclodextrin-coated quartz-crystal-microbalances (QCMs) and data evaluation by artificial neuronal networks , 2001, Fresenius' journal of analytical chemistry.

[79]  W. M. Leevy,et al.  Crown ethers: sensors for ions and molecular scaffolds for materials and biological models. , 2004, Chemical reviews.

[80]  A. Hierlemann,et al.  Chiral discrimination of inhalation anesthetics and methyl propionates by thickness shear mode resonators: new insights into the mechanisms of enantioselectivity by cyclodextrins. , 1997, Analytical chemistry.