Athena: A New Code for Astrophysical MHD
暂无分享,去创建一个
P. Teuben | J. Stone | T. Gardiner | J. Hawley | J. Simon
[1] G. Strang. On the Construction and Comparison of Difference Schemes , 1968 .
[2] S. Orszag,et al. Small-scale structure of two-dimensional magnetohydrodynamic turbulence , 1979, Journal of Fluid Mechanics.
[3] P. Woodward,et al. The Piecewise Parabolic Method (PPM) for Gas Dynamical Simulations , 1984 .
[4] W. F. Noh. Errors for calculations of strong shocks using an artificial viscosity and artificial heat flux , 1985 .
[5] J. Hawley,et al. Simulation of magnetohydrodynamic flows: A Constrained transport method , 1988 .
[6] M. Brio,et al. An upwind differencing scheme for the equations of ideal magnetohydrodynamics , 1988 .
[7] P. Colella,et al. Local adaptive mesh refinement for shock hydrodynamics , 1989 .
[8] S. Osher,et al. Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .
[9] P. Colella. Multidimensional upwind methods for hyperbolic conservation laws , 1990 .
[10] P. Roe,et al. On Godunov-type methods near low densities , 1991 .
[11] S. Falle. Self-similar jets , 1991 .
[12] Michael L. Norman,et al. A test suite for magnetohydrodynamical simulations , 1992 .
[13] M. Norman,et al. ZEUS-2D : a radiation magnetohydrodynamics code for astrophysical flows in two space dimensions. II : The magnetohydrodynamic algorithms and tests , 1992 .
[14] M. Norman,et al. ZEUS-2D: A radiation magnetohydrodynamics code for astrophysical flows in two space dimensions. I - The hydrodynamic algorithms and tests. II - The magnetohydrodynamic algorithms and tests , 1992 .
[15] J. Saltzman,et al. An unsplit 3D upwind method for hyperbolic conservation laws , 1994 .
[16] Phillip Colella,et al. A Higher-Order Godunov Method for Multidimensional Ideal Magnetohydrodynamics , 1994, SIAM J. Sci. Comput..
[17] Paul R. Woodward,et al. An approximate Riemann solver for ideal magnetohydrodynamics , 1994 .
[18] James J. Quirk,et al. A Contribution to the Great Riemann Solver Debate , 1994 .
[19] Dongsu Ryu,et al. Numerical magnetohydrodynamics in astrophysics: Algorithm and tests for multidimensional flow , 1995 .
[20] David A. Clarke,et al. A consistent method of characteristics for multidimensional magnetohydrodynamics , 1996 .
[21] Derek M. Causon,et al. On the Choice of Wavespeeds for the HLLC Riemann Solver , 1997, SIAM J. Sci. Comput..
[22] E. Toro. Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .
[23] Gérard Gallice,et al. Roe Matrices for Ideal MHD and Systematic Construction of Roe Matrices for Systems of Conservation Laws , 1997 .
[24] S. A. E. G. Falle,et al. A multidimensional upwind scheme for magnetohydrodynamics , 1998 .
[25] Paul R. Woodward,et al. A Simple Finite Difference Scheme for Multidimensional Magnetohydrodynamical Equations , 1998 .
[26] Francesco Miniati,et al. A Divergence-free Upwind Code for Multidimensional Magnetohydrodynamic Flows , 1998 .
[27] Dinshaw S. Balsara,et al. Total Variation Diminishing Scheme for Adiabatic and Isothermal Magnetohydrodynamics , 1998 .
[28] P. Roe,et al. A Solution-Adaptive Upwind Scheme for Ideal Magnetohydrodynamics , 1999 .
[29] P. Londrillo,et al. High-Order Upwind Schemes for Multidimensional Magnetohydrodynamics , 1999, astro-ph/9910086.
[30] D. Balsara,et al. A Staggered Mesh Algorithm Using High Order Godunov Fluxes to Ensure Solenoidal Magnetic Fields in Magnetohydrodynamic Simulations , 1999 .
[31] G. Tóth. The ∇·B=0 Constraint in Shock-Capturing Magnetohydrodynamics Codes , 2000 .
[32] Chi-Wang Shu,et al. Monotonicity Preserving Weighted Essentially Non-oscillatory Schemes with Increasingly High Order of Accuracy , 2000 .
[33] Marco Velli,et al. Parametric decay of circularly polarized Alfvén waves: Multidimensional simulations in periodic and open domains , 2001 .
[34] J. M. Stone,et al. A Module for Radiation Hydrodynamic Calculations with ZEUS-2D Using Flux-limited Diffusion , 2001, astro-ph/0102145.
[35] R. Sutherland,et al. The Numerical Simulation of Radiative Shocks. I. The Elimination of Numerical Shock Instabilities Using a Local Oscillation Filter , 2002, astro-ph/0204373.
[36] C. Munz,et al. Hyperbolic divergence cleaning for the MHD equations , 2002 .
[37] J. Hawley,et al. A Numerical Method for General Relativistic Magnetohydrodynamics , 2002, astro-ph/0210518.
[38] Rony Keppens,et al. Amrvac: a Multidimensional Grid-adaptive Magnetofluid Dynamics Code , 2002 .
[39] R. LeVeque. Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .
[40] Richard Liska,et al. Comparison of Several Difference Schemes on 1D and 2D Test Problems for the Euler Equations , 2003, SIAM J. Sci. Comput..
[41] Manuel Torrilhon,et al. Non-uniform convergence of finite volume schemes for Riemann problems of ideal magnetohydrodynamics , 2003 .
[42] Michael L. Norman,et al. Beyond Flux-Limited Diffusion: Parallel Algorithms for Multidimensional Radiation Hydrodynamics , 2003 .
[43] Ue-Li Pen,et al. A FREE, FAST, SIMPLE, AND EFFICIENT TOTAL VARIATION DIMINISHING MAGNETOHYDRODYNAMIC CODE , 2003 .
[44] Ue-Li Pen,et al. A Free , Fast , Simple and Efficient TVD MHD Code , 2003 .
[45] Richard I. Klein,et al. An unsplit, cell-centered Godunov method for ideal MHD - eScholarship , 2003 .
[46] U. Ziegler,et al. A central-constrained transport scheme for ideal magnetohydrodynamics , 2004 .
[47] William J. Rider,et al. A quantitative comparison of numerical methods for the compressible Euler equations: fifth-order WENO and piecewise-linear Godunov , 2004 .
[48] P. Londrillo,et al. On the divergence-free condition in Godunov-type schemes for ideal magnetohydrodynamics: the upwind constrained transport method , 2004 .
[49] James M. Stone,et al. Nonlinear Evolution of the Magnetothermal Instability in Two Dimensions , 2005, astro-ph/0507212.
[50] U. Ziegler,et al. Self-gravitational adaptive mesh magnetohydrodynamics with the NIRVANA code , 2005 .
[51] J. Stone,et al. An unsplit Godunov method for ideal MHD via constrained transport , 2005, astro-ph/0501557.
[52] Stability of an impulsively accelerated density interface in magnetohydrodynamics. , 2005, Physical review letters.
[53] R. Teyssier,et al. A high order Godunov scheme with constrained transport and adaptive mesh refinement for astrophysical magnetohydrodynamics , 2006 .
[55] M. L. Norman,et al. Simulating Radiating and Magnetized Flows in Multiple Dimensions with ZEUS-MP , 2005, astro-ph/0511545.
[56] A. Ferrari,et al. PLUTO: A Numerical Code for Computational Astrophysics , 2007, astro-ph/0701854.
[57] J. Stone,et al. Magnetohydrodynamic Evolution of H II Regions in Molecular Clouds: Simulation Methodology, Tests, and Uniform Media , 2006, astro-ph/0606539.
[58] J. Stone,et al. Nonlinear evolution of the magnetohydrodynamic Rayleigh-Taylor instability , 2007, 0707.1022.
[59] Jonathan C. McKinney,et al. WHAM : a WENO-based general relativistic numerical scheme -I. Hydrodynamics , 2007, 0704.2608.
[60] J. Stone,et al. The Magnetic Rayleigh-Taylor Instability in Three Dimensions , 2007, 0709.0452.
[61] Saturation of the Magnetothermal Instability in Three Dimensions , 2006, astro-ph/0612195.
[62] J. Stone,et al. Effect of the Coriolis Force on the Hydrodynamics of Colliding-Wind Binaries , 2007, astro-ph/0702425.
[63] G. Snyder,et al. The Magnetohydrodynamics of Shock-Cloud Interaction in Three Dimensions , 2008, 0802.2708.
[64] James M. Stone,et al. An unsplit Godunov method for ideal MHD via constrained transport in three dimensions , 2007, J. Comput. Phys..