Adaptive optics in the formation of optical beams and images

In connection with the wide use of optoelectronic systems, we review the development of adaptive optics as an effective tool that allows using controllable optical elements to eliminate irregular distortions that occur as light propagates in an inhomogeneous medium. The subject matter of this rapidly developing field of science and technology is described. Of the ideas under development in recent years, many have been around for quite a long time, but it is only now, with the development of an up-to-date optoelectronic element base, that they have started being widely incorporated into science and engineering practice. We discuss the development of adaptive optics from mere ideas to their application in astronomy, high-power laser physics, and medicine. The current state of adaptive optics in stellar and solar astronomy is reviewed, and some results of its use in distortion correction systems of high-power laser systems and facilities are presented.

[1]  Marina I. Mityagina,et al.  REVIEWS OF TOPICAL PROBLEMS: Physical mechanisms of aerospace radar imaging of the ocean , 2003 .

[2]  Horace W. Babcock,et al.  THE POSSIBILITY OF COMPENSATING ASTRONOMICAL SEEING , 1953 .

[3]  Donald Gavel Laser technology for astronomical adaptive optics , 2008, Astronomical Telescopes + Instrumentation.

[4]  F. P. Vasil’ev,et al.  On the optimal control of the process of thermal blooming , 1979 .

[5]  Vladimir P. Lukin,et al.  Adaptive Beaming and Imaging in the Turbulent Atmosphere , 2002 .

[6]  Y. Zel’dovich,et al.  Principles of phase conjugation , 1985 .

[7]  Eric Gendron,et al.  Tests of the PSF reconstruction algorithm for NACO/VLT , 2008, Astronomical Telescopes + Instrumentation.

[8]  Mark Shand,et al.  Adaptive optics system for the new Swedish solar telescope , 2003, SPIE Astronomical Telescopes + Instrumentation.

[9]  Vladimir P. Lukin,et al.  Adaptive optical system for a ground-based solar telescope , 2006 .

[10]  V. Golenishchev-kutuzov,et al.  Induced domains and periodic domain structures in electrically and magnetically ordered materials , 2000 .

[11]  Robert A. Gonsalves,et al.  Phase Retrieval And Diversity In Adaptive Optics , 1982 .

[12]  A. Potekhin,et al.  Atmospheres and radiating surfaces of neutron stars , 2014, 1403.0074.

[13]  Vladimir P. Lukin,et al.  Adaptive correction of images , 1983 .

[14]  J. Herrmann,et al.  Phase compensation for thermal blooming. , 1974, Applied optics.

[15]  J. Herrmann,et al.  Cross coupling and aliasing in modal wave-front estimation , 1981 .

[16]  F. Gebhardt High power laser propagation. , 1976, Applied optics.

[17]  J. W. Hardy,et al.  Active optics: A new technology for the control of light , 1978, Proceedings of the IEEE.

[18]  R. Noll Zernike polynomials and atmospheric turbulence , 1976 .

[19]  V P Aksenov,et al.  Correction of vortex laser beam in a closed-loop adaptive system with bimorph mirror. , 2009, Optics letters.

[20]  J. Herrmann,et al.  Properties of phase conjugate adaptive optical systems , 1977 .

[21]  R. Muller,et al.  Real-time correction of atmospherically degraded telescope images through image sharpening , 1974 .

[22]  M. D. Feit,et al.  Time-dependent propagation of high-energy laser beams through the atmosphere: II , 1978 .

[23]  Darryl P. Greenwood,et al.  Bandwidth specification for adaptive optics systems , 1977 .

[24]  Bruno Femenía,et al.  Tip-tilt reconstruction with a single dim natural guide star in multiconjugate adaptive optics with laser guide stars. , 2005, Journal of the Optical Society of America. A, Optics, image science, and vision.

[25]  I. Smirnova,et al.  X-ray diffraction imaging of defects in topography (microscopy) studies , 2015 .

[26]  V. P. Kandidov,et al.  From self-focusing light beams to femtosecond laser pulse filamentation , 2013 .

[27]  Sean M. Adkins,et al.  20-W and 50-W solid-state sodium beacon guidestar laser systems for the Keck I and Gemini South telescopes , 2006, SPIE Astronomical Telescopes + Instrumentation.

[28]  P. Daukantas Using Optics to Detect Skin Cancer , 2007 .

[29]  A. Ardeberg,et al.  EURO50: A EUROPEAN 50MADAPTIVE OPTICS EXTREMELY LARGE TELESCOPE , 2006 .

[30]  D. Fried Focus anisoplanatism in the limit of infinitely many artificial-guide-star reference spots , 1995 .

[31]  R. B. Dunn,et al.  Solar feature correlation tracker for ground-based telescopes , 1989 .

[32]  Christoph Baranec,et al.  Commissioning the MMT ground-layer and laser tomography adaptive optics systems , 2008, Astronomical Telescopes + Instrumentation.

[33]  R. Buckley,et al.  Diffraction by a random phase-changing screen: A numerical experiment , 1975 .

[34]  H. Takajo,et al.  Least-squares phase estimation from the phase difference , 1988 .

[35]  Arkady Gonoskov,et al.  Horizons of petawatt laser technology , 2011, Physics-Uspekhi.

[36]  James H. Brown,et al.  Atmospheric Models Of Optical Turbulence , 1988, Defense, Security, and Sensing.

[37]  C. A. Primmerman,et al.  Atmospheric-compensation experiments in strong-scintillation conditions. , 1995, Applied optics.

[38]  Anatolii I. Zhakin,et al.  Ionic conductivity and complexation in liquid dielectrics , 2003 .

[39]  T. Gombosi,et al.  Cometary ion distributions near the pickup energy outside comet Halley's bow shock , 1991 .

[40]  Akira Ishimaru,et al.  Wave Propagation in Random Media (Scintillation) , 1993 .

[41]  A. Ionin,et al.  Formation of plasma channels in air under filamentation of focused ultrashort laser pulses , 2015 .

[42]  David L. Fried,et al.  Statistics of a Geometric Representation of Wavefront Distortion: Errata , 1965 .

[43]  L. V. L'vov,et al.  NONLINEAR OPTICAL PHENOMENA: Self-focusing suppression in a system of two nonlinear media and a spatial filter , 2007 .

[44]  V. Kornilov,et al.  Restoration of turbulence profile from scintillation indices , 2003 .

[45]  V. V. Nosov,et al.  Image jitter of a laser guide star in a monostatic formation scheme , 2009 .

[46]  D. Smith,et al.  Self-induced thermal distortion in the near field for a laser beam in a moving medium , 1971 .

[47]  Sergio Barbero,et al.  Validation of the estimation of corneal aberrations from videokeratography in keratoconus. , 2002, Journal of refractive surgery.

[48]  V P Lukin,et al.  Dynamics of adaptive optical systems. , 2010, Journal of the Optical Society of America. A, Optics, image science, and vision.

[49]  P. Ulrich,et al.  Comparison of a Wave-Optics Computer Model with Nonlinear Laser-Propagation Experiments , 1972 .

[50]  D. Fried Limiting Resolution Looking Down Through the Atmosphere , 1966 .

[51]  M. Sarazin,et al.  The ESO differential image motion monitor , 1990 .

[52]  Vladimir P. Lukin,et al.  Potential capabilities of adaptive-optical systems in the atmosphere , 1994 .

[53]  Brent L Ellerbroek,et al.  Sky coverage estimates for adaptive optics systems from computations in Zernike space. , 2006, Journal of the Optical Society of America. A, Optics, image science, and vision.

[54]  Robert Q. Fugate LASER BEACON ADAPTIVE OPTICS , 1993 .

[55]  Thomas Weyrauch,et al.  Deep turbulence effects compensation experiments with a cascaded adaptive optics system using a 3.63 m telescope. , 2009, Applied optics.

[56]  V. E. Zavalova,et al.  Shack — Hartmann wavefront sensor for measuring the parameters of high-power pulsed solid-state lasers , 2010 .

[57]  J. Pasciak,et al.  Compensating for thermal blooming of repetitively pulsed lasers , 1975 .

[58]  S. Rabien,et al.  The laser guide star program for the LBT , 2008, Astronomical Telescopes + Instrumentation.

[59]  Robert W. Duffner Airborne Laser: Bullets of Light , 1997 .

[60]  A. M. Miterev REVIEWS OF TOPICAL PROBLEMS: Theoretical aspects of the formation and evolution of charged particle tracks , 2002 .

[61]  D. Fried,et al.  Branch cuts in the phase function. , 1992, Applied optics.

[62]  Y. Efremov,et al.  Large-scale star formation in galaxies , 2003 .

[63]  N. N. Botugina,et al.  Development of adaptive optics elements for solar telescope , 2012, Other Conferences.

[64]  V. E. Zuev,et al.  Minimization of atmospheric distortion of optical waves in adaptive optics , 1985 .

[65]  F Roddier,et al.  Curvature sensing and compensation: a new concept in adaptive optics. , 1988, Applied optics.

[66]  Richard Dekany,et al.  Facilitizing the Palomar AO laser guide star system , 2008, Astronomical Telescopes + Instrumentation.

[67]  J. Vernin,et al.  Image processing adapted to the atmospheric speckle. II. Remote sounding of turbulence by means of multidimensional analysis , 1983 .

[68]  Thomas Rimmele,et al.  High-order adaptive optical system for Big Bear Solar Observatory , 2003, SPIE Astronomical Telescopes + Instrumentation.

[69]  Vladimir P Lukin,et al.  ARTICLES: Reciprocity principle and adaptive control of optical radiation parameters , 1982 .

[70]  Patricia Daukantas Ground-Based Telescopes for the 21 st Century , 2007 .

[71]  Todd D. Steiner,et al.  Airborne laser advanced concepts testbed , 1999, Defense, Security, and Sensing.

[72]  Julien Borgnino,et al.  Determination of Fried's parameter r0 prediction for the observed r.m.s. contrast in solar granulation , 1981 .

[73]  G. N. Makarov REVIEWS OF TOPICAL PROBLEMS: Studies on high-intensity pulsed molecular beams and flows interacting with a solid surface , 2003 .

[74]  G. N. Makarov The spectroscopy of clusters by intense pulses of VUV radiation from free electron lasers , 2009 .

[75]  Miceli,et al.  Diffraction-free beams. , 1987, Physical review letters.

[76]  V P Lukin,et al.  Thermal distortions of focused laser beams in the atmosphere , 1985, Applied optics.

[77]  Richard W. Wilson,et al.  SLODAR: measuring optical turbulence altitude with a Shack–Hartmann wavefront sensor , 2002 .

[78]  P. A. Konyaev,et al.  Computer simulation of optical wave propagation with the use of parallel programming , 2011 .

[79]  S. Flatté,et al.  Intensity images and statistics from numerical simulation of wave propagation in 3-D random media. , 1988, Applied optics.

[80]  Vladimir P. Lukin Atmospheric Adaptive Optics , 1996 .

[81]  Vladimir P. Lukin,et al.  Modified correlation tracker algorithm for tip-tilt correction system and project ANGARA on the Big Solar Vacuum Telescope , 2006, SPIE Astronomical Telescopes + Instrumentation.

[82]  Chester S. Gardner,et al.  Experiments on laser guide stars at Mauna Kea Observatory for adaptive imaging in astronomy , 1987, Nature.

[83]  Ronald Cubalchini,et al.  Modal wave-front estimation from phase derivative measurements , 1979 .

[84]  F. Chukhovskiǐ,et al.  THE PROBLEM OF IMAGE FORMATION IN X-RAY OPTICS , 1972 .

[85]  L. Pyatnitskii REVIEWS OF TOPICAL PROBLEMS: Optical discharge in the field of a Bessel laser beam , 2010 .

[86]  P. D. Gasparyan,et al.  REVIEWS OF TOPICAL PROBLEMS: Angular divergence and spatial coherence of X-ray laser radiation , 1998 .

[87]  L. V. Doronina-Amitonova,et al.  Neurophotonics: optical methods to study and control the brain , 2015 .

[88]  Vladimir P. Lukin,et al.  Possibility of adaptive correction for atmospheric turbulent layer , 2000, Atmospheric and Ocean Optics.

[89]  Fedor A. Starikov,et al.  Phase correction of laser radiation with the use of adaptive optical systems at the Russian Federal Nuclear Center—Institute of Experimental Physics , 2012 .

[90]  A. V. Kirpichnikov,et al.  Multilevel kinoform microlens arrays in fused silica for high-power laser optics , 2004, Laser Optics.

[91]  Alexis Kudryashov,et al.  Tiny bimorph mirrors for laser beam control , 2006, SPIE MOEMS-MEMS.

[92]  Vladimir P. Lukin,et al.  Modeling of the image observed through a turbulent atmosphere , 1992, Defense, Security, and Sensing.

[93]  Vladimir P. Lukin,et al.  Principal limitations of phase conjugation algorithm and amplitude-phase control in two-mirror adaptive system , 2003, Atmospheric and Ocean Optics.

[94]  T. Mckechnie,et al.  Atmospheric turbulence and the resolution limits of large ground-based telescopes , 1992 .

[95]  Michael C. Roggemann,et al.  Two-Deformable-Mirror Concept for Correcting Scintillation Effects in Laser Beam Projection Through the Turbulent Atmosphere , 1998 .

[96]  V. Kandidov Monte Carlo method in nonlinear statistical optics , 1996 .

[97]  J. Y. Wang,et al.  Modal compensation of atmospheric turbulence phase distortion , 1978 .

[98]  J. Strohbehn Laser beam propagation in the atmosphere , 1978 .

[99]  Vladimir Lukin,et al.  New LGS for large aperture telescope , 2007, SPIE Remote Sensing.

[100]  P. A. Konyaev,et al.  Beam spreading of vortex beams propagating in turbulent atmosphere. , 2012, Applied optics.

[101]  Robert J. Noll,et al.  Phase estimates from slope-type wave-front sensors , 1978 .

[102]  Vladimir P. Lukin Comparative characteristics of some correction algorithms , 1981 .

[103]  D. S. Acton,et al.  Solar imaging with a segmented adaptive mirror. , 1992, Applied optics.

[104]  F. Roddier V The Effects of Atmospheric Turbulence in Optical Astronomy , 1981 .

[105]  R. Hudgin Wave-front reconstruction for compensated imaging , 1977 .

[106]  S. Wandzura,et al.  Spatial correlation of phase-expansion coefficients for propagation through atmospheric turbulence , 1979 .

[107]  Olivier Guyon,et al.  Current status of the laser guide star adaptive optics system for Subaru Telescope , 2008, Astronomical Telescopes + Instrumentation.

[108]  Thomas J. Karr Atmospheric Effects On Laser Propagation , 1989, Photonics West - Lasers and Applications in Science and Engineering.

[109]  J. Conan,et al.  Shack-Hartmann wavefront estimation with extended sources: anisoplanatism influence. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[110]  Robert Q. Fugate,et al.  Analysis of measured photon returns from sodium beacons , 1998 .

[111]  S. S. Chesnokov,et al.  Thermal self-action of light beams and methods of compensating for it , 1980 .

[112]  R. Ragazzoni Pupil plane wavefront sensing with an oscillating prism , 1996 .

[113]  M. Kasper,et al.  Adaptive Optics for Astronomy , 2012, 1201.5741.

[114]  R. Foy,et al.  Adaptive telescope with laser probe : isoplanatism and cone effect , 1990 .

[115]  Gerard Mourou,et al.  Generation and characterization of the highest laser intensities (1022 W/cm2) , 2004, CLEO 2004.

[116]  V. Lukin,et al.  Optical wave phase fluctuations. , 1981, Applied optics.

[117]  O. von der Lühe,et al.  Solar adaptive optics , 1991 .

[118]  P.-Y. Madec Overview of deformable mirror technologies for adaptive optics and astronomy , 2012, Other Conferences.

[119]  Takashi Fujikado,et al.  Effect of tear film break-up on higher-order aberrations measured with wavefront sensor. , 2002, American journal of ophthalmology.

[120]  A. Prokhorov,et al.  REVIEWS OF TOPICAL PROBLEMS: Theory of the propagation of high-power laser radiation in a nonlinear medium , 1974 .

[121]  Salvador Cuevas,et al.  Adaptive optics and the outer scale of turbulence , 1995 .

[122]  D. Smith,et al.  Effects of Diffraction of the Self-induced Thermal Distortion of a Laser Beam in a Crosswind. , 1972, Applied optics.

[123]  David L. Fried,et al.  Least-square fitting a wave-front distortion estimate to an array of phase-difference measurements , 1977 .

[124]  Christian Chappuis,et al.  Design principle and first results obtained on the LMJ deformable mirror prototypee , 2007, SPIE Optics + Optoelectronics.

[125]  Vladimir P. Lukin BRIEF COMMUNICATIONS: Efficiency of the compensation of phase distortions of optical waves , 1977 .

[126]  Jean-Pierre Véran,et al.  Update on the TMT adaptive optics real time controller , 2008, Astronomical Telescopes + Instrumentation.

[127]  Mikhail S. Belen'kii Full aperture tilt measurement technique with a laser guide star , 1995, Defense, Security, and Sensing.

[128]  David L. Fried,et al.  Power spectra requirements for wave-front-compensative systems* , 1976 .

[129]  N. G. Iroshnikov,et al.  Adaptive system for eye-fundus imaging , 2002 .

[130]  Hiroaki Takajo,et al.  Noniterative method for obtaining the exact solution for the normal equation in least-squares phase estimation from the phase difference , 1988 .

[131]  Alexey Belyakov,et al.  Creating a model of the human eye by the methods of adaptive optics , 2006 .

[132]  J. Y. Wang,et al.  Wave-front interpretation with Zernike polynomials. , 1980, Applied optics.

[133]  Roberto Ragazzoni,et al.  Adaptive-optics corrections available for the whole sky , 2000, Nature.

[134]  Takashi Fujikado,et al.  Wavefront aberrations measured with Hartmann-Shack sensor in patients with keratoconus. , 2002, Ophthalmology.