On some empirical expressions for the contact values of the pair distribution functions and fluid—fluid phase separation in hard sphere mixtures

The fluid-fluid binodal of asymmetric hard sphere mixtures obtained from approximate expressions of the virial pressure is investigated. Also the behaviour of the Gibbs free energy following from particular combinations of standard expressions of the contact values of the pair distributions functions is examined. A recently proposed parametrization of the latter in the colloidal limit is then discussed and compared with existing simulation data for the binodal of the effective fluid.

[1]  S. Amokrane,et al.  True mixture versus effective one component fluid models of asymmetric binary hard sphere mixtures: a comparison by simulation , 2001 .

[2]  J. Solana,et al.  Consistency conditions and equation of state for additive hard-sphere fluid mixtures , 2000 .

[3]  Kwong‐Yu Chan,et al.  Equation of state and correlation function contact values of a hard sphere mixture , 2000 .

[4]  Wenchuan Wang,et al.  Monte Carlo data of dilute solutions of large spheres in binary hard sphere mixtures , 2000 .

[5]  S. B. Yuste,et al.  Demixing in binary mixtures of hard hyperspheres , 2000, cond-mat/0002354.

[6]  Amokrane,et al.  Phase diagram of highly asymmetric binary mixtures: A study of the role of attractive forces from the effective one-component approach , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[7]  J. Solana,et al.  A NEW ANALYTICAL EQUATION OF STATE FOR ADDITIVE HARD SPHERE FLUID MIXTURES , 1999 .

[8]  R. Wheatley On the virial series for hard-sphere mixtures , 1999 .

[9]  D. Matyushov,et al.  The solvent-solute distribution function of binary hard sphere mixtures for dilute concentrations of the large sphere , 1999 .

[10]  L. V. Woodcock,et al.  Depletion effects and gelation in a binary hard-sphere fluid , 1999 .

[11]  M. Dijkstra,et al.  Phase diagram of highly asymmetric binary hard-sphere mixtures. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[12]  G. Mansoori,et al.  Hard-sphere mixture excess free energy at infinite size ratio , 1999 .

[13]  S. B. Yuste,et al.  EQUATION OF STATE OF A MULTICOMPONENT D – DIMENSIONAL HARD – SPHERE FLUID , 1999, cond-mat/0204246.

[14]  D. Wasan,et al.  Phase separation in fluid additive hard sphere mixtures , 1998 .

[15]  M. Baus,et al.  Demixing vs freezing of binary hard-sphere mixtures , 1998 .

[16]  Kwong‐Yu Chan,et al.  Solute-solvent pair distribution functions in highly asymmetric additive hard sphere mixtures , 1998 .

[17]  W. Krauth,et al.  Numerical Solution of Hard-Core Mixtures , 1997, cond-mat/9712092.

[18]  D. Frenkel,et al.  Depletion effects in binary hard-sphere fluids , 1996 .

[19]  D. Henderson,et al.  Integral equation study of additive two-component mixtures of hard spheres , 1996 .

[20]  Amokrane,et al.  Free-volume fraction in hard-sphere mixtures and the osmotic spinodal curve. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[21]  E. Hamad Consistency test for mixture pair correlation function integrals , 1994 .

[22]  Rosenfeld,et al.  Phase separation of asymmetric binary hard-sphere fluids: Self-consistent density functional theory. , 1994, Physical review letters.

[23]  H. Lekkerkerker,et al.  On the spinodal instability of highly asymmetric hard sphere suspensions , 1993 .

[24]  Hansen,et al.  Phase separation of asymmetric binary hard-sphere fluids. , 1991, Physical review letters.

[25]  G. Patey,et al.  Hypernetted‐chain closure with bridge diagrams. Asymmetric hard sphere mixtures , 1990 .

[26]  D. Lévesque,et al.  Perturbation theory for mixtures of simple liquids , 1973 .

[27]  K. E. Starling,et al.  Equilibrium Thermodynamic Properties of the Mixture of Hard Spheres , 1971 .

[28]  Tomáš Boublı́k,et al.  Hard‐Sphere Equation of State , 1970 .