Multicopy programmable discriminators between two unknown qubit states with group-theoretic approach

The discrimination between two unknown states can be performed by a universal programmable discriminator, where the copies of the two possible states are stored in two program systems respectively and the copies of data, which we want to confirm, are provided in the data system. In the present paper, we propose a group-theretic approach to the multi-copy programmable state discrimination problem. By equivalence of unknown pure states to known mixed states and with the representation theory of U(n) group, we construct the Jordan basis to derive the analytical results for both the optimal unambiguous discrimination and minimum-error discrimination. The POVM operators for unambiguous discrimination and orthogonal measurement operators for minimum-error discrimination are obtained. We find that the optimal failure probability and minimum-error probability for the discrimination between the mean input mixd states are dependent on the dimension of the unknown qudit states. We applied the approach to generalize the results of He and Bergou (Phys. Rev. A 75, 032316 (2007)) from qubit to qudit case, and we further solve the problem of programmable dicriminators with arbitrary copies of unknown states in both program and data systems.

[1]  A. R. Edmonds Angular Momentum in Quantum Mechanics , 1957 .

[2]  C. Helstrom Quantum detection and estimation theory , 1969 .

[3]  W. Wootters,et al.  A single quantum cannot be cloned , 1982, Nature.

[4]  I. D. Ivanović How to differentiate between non-orthogonal states , 1987 .

[5]  D. Dieks Overlap and distinguishability of quantum states , 1988 .

[6]  Jin-quan Chen Group Representation Theory For Physicists , 1989 .

[7]  B. M. Fulk MATH , 1992 .

[8]  A. Shimony,et al.  Optimal distinction between two non-orthogonal quantum states , 1995 .

[9]  Anthony Chefles,et al.  Unambiguous discrimination between linearly independent quantum states , 1998, quant-ph/9807022.

[10]  H. Sommers,et al.  Induced measures in the space of mixed quantum states , 2000, quant-ph/0012101.

[11]  J. Cirac,et al.  Storage of quantum dynamics on quantum states: a quasi-perfect programmable quantum gate , 2000, quant-ph/0012067.

[12]  Mário Ziman,et al.  Programmable Quantum Gate Arrays , 2001 .

[13]  S. Barnett Minimum-error discrimination between multiply symmetric states , 2001 .

[14]  V. Buzek,et al.  Probabilistic implementation of universal quantum processors , 2001, quant-ph/0106088.

[15]  M. Dušek,et al.  Universal measurement apparatus controlled by quantum software. , 2002, Physical review letters.

[16]  Quantum-controlled measurement device for quantum-state discrimination , 2002 .

[17]  S. Barnett,et al.  Minimum-error discrimination between three mirror-symmetric states , 2002, quant-ph/0201074.

[18]  M. Dušek,et al.  Quantum-controlled measurement device for quantum-state discrimination , 2002 .

[19]  U. Herzog,et al.  Minimum-error discrimination between subsets of linearly dependent quantum states , 2001, quant-ph/0112171.

[20]  Chih-Lung Chou,et al.  Minimum-error discrimination between symmetric mixed quantum states , 2003, quant-ph/0304117.

[21]  G. Long,et al.  Parallel Quantum Computing in a Single Ensemble Quantum Computer , 2003, quant-ph/0307055.

[22]  M. Dušek,et al.  Probabilistic quantum multimeters , 2003, quant-ph/0308111.

[23]  M. Dušek,et al.  Experimental realization of a programmable quantum-state discriminator and a phase-covariant quantum multimeter , 2004, quant-ph/0401166.

[24]  A. Hayashi,et al.  Quantum pure-state identification , 2005, quant-ph/0507237.

[25]  Mark Hillery,et al.  Universal programmable quantum state discriminator that is optimal for unambiguously distinguishing between unknown states. , 2005, Physical review letters.

[26]  G. D’Ariano,et al.  Efficient universal programmable quantum measurements. , 2004, Physical review letters.

[27]  G. D’Ariano,et al.  Minimax quantum-state discrimination , 2005, quant-ph/0504048.

[28]  A. Hayashi,et al.  Reexamination of optimal quantum state estimation of pure states (5 pages) , 2004, quant-ph/0410207.

[29]  U. Herzog,et al.  Programmable quantum-state discriminators with simple programs , 2006, quant-ph/0602164.

[30]  A. Hayashi,et al.  Unambiguous pure-state identification without classical knowledge , 2005, quant-ph/0510015.

[31]  S. Barnett,et al.  Maximum confidence quantum measurements. , 2006, Physical review letters.

[32]  J. Bergou,et al.  Optimal unambiguous discrimination of two subspaces as a case in mixed-state discrimination , 2006, quant-ph/0602093.

[33]  M. Ying,et al.  Universal programmable devices for unambiguous discrimination , 2005, quant-ph/0512029.

[34]  J. Bergou,et al.  A generalized programmable unambiguous state discriminator for unknown qubit systems , 2006 .

[35]  J. Bergou,et al.  Unambiguous discriminator for unknown quantum states: An implementation , 2007 .

[36]  J. Bergou,et al.  Programmable unknown quantum-state discriminators with multiple copies of program and data: A Jordan-basis approach , 2006, quant-ph/0610226.

[37]  J. Bergou,et al.  Universal discriminator for completely unknown optical qubits , 2007, 0706.2429.

[38]  U. Herzog,et al.  Optimum unambiguous identification of d unknown pure qudit states , 2008, 0809.4884.

[39]  M. Dušek,et al.  Programmable discriminator of coherent states: Experimental realization , 2007, 0711.4712.

[40]  Xiaohua Wu,et al.  Optical realization of the unambiguous discriminator for unknown quantum states , 2008 .

[41]  Tao Zhou,et al.  One-photon interferometer for realizing optimal unambiguous discrimination among quantum subsets , 2009 .

[42]  J. Bergou,et al.  Processing multiphoton states through operation on a single photon: Methods and applications , 2009, 0909.3879.

[43]  G. Sent'is,et al.  Multicopy programmable discrimination of general qubit states , 2010, 1007.5497.

[44]  M. Hayashi,et al.  Discrimination of the change point in a quantum setting , 2011 .

[45]  Tao Zhou,et al.  Unambiguous discrimination between two unknown qudit states , 2011, Quantum Inf. Process..