A Eulerian level set/vortex sheet method for two-phase interface dynamics

A Eulerian fixed grid approach to simulate the dynamics of two-phase interfaces in the presence of surface tension forces is presented. This level set/vortex sheet method consists of a simplified system of equations that contain individual source terms describing the relevant physical processes at the phase interface explicitly. Hence, this approach provides a framework that will allow for a simplified subsequent modeling of phase interface dynamics in turbulent environments. In the presented level set/vortex sheet method, the location and the motion of the phase interface are captured by a level set equation. Topological changes of the interface, like breakup or merging, are thus handled automatically. Assuming that all vorticity is concentrated at the phase interface, the phase interface itself constitutes a vortex sheet with varying vortex sheet strength. The Eulerian transport equation for the vortex sheet strength is derived by combining its Lagrangian formulation with the level set equation. The resulting differential equation then contains source terms accounting for the stretching of the interface and the influence of surface tension, thus allowing for a detailed study of each effect individually. The results of three test problems, namely the roll-up of a vortex sheet without surface tension, the growth of the Kelvin-Helmholtz instability in the linear regime, and the long-time evolution of the Kelvin-Helmholtz instability are presented.

[1]  Ian M. Mitchell,et al.  A hybrid particle level set method for improved interface capturing , 2002 .

[2]  R. A. Wentzell,et al.  Hydrodynamic and Hydromagnetic Stability. By S. CHANDRASEKHAR. Clarendon Press: Oxford University Press, 1961. 652 pp. £5. 5s. , 1962, Journal of Fluid Mechanics.

[3]  C. Peskin Numerical analysis of blood flow in the heart , 1977 .

[4]  P. Steen,et al.  Dynamics of inviscid capillary breakup: collapse and pinchoff of a film bridge , 1997, Journal of Fluid Mechanics.

[5]  S. Osher,et al.  Regular Article: A PDE-Based Fast Local Level Set Method , 1999 .

[6]  S. Osher,et al.  Regular Article: A PDE-Based Fast Local Level Set Method , 1999 .

[7]  S. Zaleski,et al.  Volume-of-Fluid Interface Tracking with Smoothed Surface Stress Methods for Three-Dimensional Flows , 1999 .

[8]  S. Zaleski,et al.  Viscous modes in two-phase mixing layers , 2002 .

[9]  Gregory Baker,et al.  Stable Methods for Vortex Sheet Motion in the Presence of Surface Tension , 1998, SIAM J. Sci. Comput..

[10]  J. A. Sethian,et al.  Fast Marching Methods , 1999, SIAM Rev..

[11]  Mark Sussman,et al.  An Efficient, Interface-Preserving Level Set Redistancing Algorithm and Its Application to Interfacial Incompressible Fluid Flow , 1999, SIAM J. Sci. Comput..

[12]  D. W. Moore,et al.  The spontaneous appearance of a singularity in the shape of an evolving vortex sheet , 1979, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[13]  J. Brackbill,et al.  A continuum method for modeling surface tension , 1992 .

[14]  Maurizio Brocchini,et al.  The dynamics of strong turbulence at free surfaces. Part 2. Free-surface boundary conditions , 2001, Journal of Fluid Mechanics.

[15]  Gretar Tryggvason,et al.  Fine Structure of Vortex Sheet Rollup by Viscous and Inviscid Simulation , 1991 .

[16]  A. D. Gosman,et al.  Proceedings of the fifth international conference on numerical methods in fluid dynamics: edited by A.I. Van de Vooren and P.J. Zanbergen, Springer-Verlag, 1976. $15.20 , 1978 .

[17]  Jie Li,et al.  Droplet formation in sheared liquid-gas layers , 2007 .

[18]  A. Michalke,et al.  On the inviscid instability of the hyperbolictangent velocity profile , 1964, Journal of Fluid Mechanics.

[19]  Maurizio Brocchini,et al.  The dynamics of strong turbulence at free surfaces. Part 1. Description , 2001, Journal of Fluid Mechanics.

[20]  Stanley Osher,et al.  An Eulerian Approach for Vortex Motion Using a Level Set Regularization Procedure , 1996 .

[21]  S. Osher,et al.  An improved level set method for incompressible two-phase flows , 1998 .

[22]  S. Osher,et al.  A level set approach for computing solutions to incompressible two-phase flow , 1994 .

[23]  R. Reitz,et al.  Structure of High-Pressure Fuel Sprays , 1987 .

[24]  S. Zaleski,et al.  DIRECT NUMERICAL SIMULATION OF FREE-SURFACE AND INTERFACIAL FLOW , 1999 .

[25]  Design considerations for numerical filters used in Vortex-in-cell algorithms , 1996 .

[26]  S. Osher,et al.  High-order essentially nonsocillatory schemes for Hamilton-Jacobi equations , 1990 .

[27]  Mark Sussman,et al.  A Discontinuous Spectral Element Method for the Level Set Equation , 2003, J. Sci. Comput..

[28]  ShuChi-Wang,et al.  High-order essentially nonsocillatory schemes for Hamilton-Jacobi equations , 1991 .

[29]  J. Brackbill,et al.  Flip: A low-dissipation, particle-in-cell method for fluid flow , 1988 .

[30]  Wang Hai-bing,et al.  High-order essentially non-oscillatory schemes for Hamilton-Jacobi equations , 2006 .

[31]  Thomas Y. Hou,et al.  The long-time motion of vortex sheets with surface tension , 1997 .

[32]  James A. Sethian,et al.  The Fast Construction of Extension Velocities in Level Set Methods , 1999 .

[33]  Chi-Wang Shu Total-variation-diminishing time discretizations , 1988 .

[34]  Stanley Osher,et al.  Regularization of Ill-Posed Problems Via the Level Set Approach , 1998, SIAM J. Appl. Math..

[35]  Jie Li,et al.  Ligament formation in sheared liquid–gas layers , 2006 .

[36]  S. Osher,et al.  Algorithms Based on Hamilton-Jacobi Formulations , 1988 .

[37]  Ron Kimmel,et al.  Fast Marching Methods , 2004 .

[38]  Steven A. Orszag,et al.  Generalized vortex methods for free-surface flow problems , 1982, Journal of Fluid Mechanics.

[39]  R. Reitz Modeling atomization processes in high-pressure vaporizing sprays , 1987 .

[40]  Thomas Y. Hou,et al.  Boundary integral methods for multicomponent fluids and multiphase materials , 2001 .

[41]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[42]  T. Hou,et al.  Removing the stiffness from interfacial flows with surface tension , 1994 .

[43]  William J. Rider,et al.  Comments on Modeling Interfacial Flows with Volume-of-Fluid Methods , 1995 .

[44]  Gretar Tryggvason,et al.  The nonlinear behavior of a sheared immiscible fluid interface , 2002 .

[45]  Christopher R. Anderson,et al.  On Vortex Methods , 1985 .

[46]  G. Tryggvason Simulation of vortex sheet roll-up by vortex methods , 1989 .

[47]  Michael Shelley,et al.  A study of singularity formation in vortex-sheet motion by a spectrally accurate vortex method , 1992, Journal of Fluid Mechanics.

[48]  Roland A. Sweet,et al.  Algorithm 541: Efficient Fortran Subprograms for the Solution of Separable Elliptic Partial Differential Equations [D3] , 1979, TOMS.

[49]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[50]  L. Rayleigh On the Stability, or Instability, of certain Fluid Motions , 1879 .

[51]  P. Swarztrauber,et al.  Efficient FORTRAN subprograms for the solution of elliptic partial differential equations. , 1975, SIGNUM.

[52]  R. Krasny Desingularization of periodic vortex sheet roll-up , 1986 .

[53]  P. Woodward,et al.  SLIC (Simple Line Interface Calculation) , 1976 .

[54]  Steven A. Orszag,et al.  Analytic structure of vortex sheet dynamics. Part 1. Kelvin–Helmholtz instability , 1982, Journal of Fluid Mechanics.

[55]  W. Rider,et al.  Stretching and tearing interface tracking methods , 1995 .

[56]  F. Tanner Liquid Jet Atomization and Droplet Breakup Modeling of Non-Evaporating Diesel Fuel Sprays , 1997 .

[57]  N. Peters The turbulent burning velocity for large-scale and small-scale turbulence , 1999, Journal of Fluid Mechanics.

[58]  J. Christiansen Numerical Simulation of Hydrodynamics by the Method of Point Vortices , 1997 .

[59]  G. Tryggvason,et al.  A front-tracking method for viscous, incompressible, multi-fluid flows , 1992 .

[60]  D. I. Pullin,et al.  Numerical studies of surface-tension effects in nonlinear Kelvin–Helmholtz and Rayleigh–Taylor instability , 1982, Journal of Fluid Mechanics.

[61]  Roger H. Rangel,et al.  Nonlinear growth of Kelvin–Helmholtz instability: Effect of surface tension and density ratio , 1988 .

[62]  Danping Peng,et al.  Weighted ENO Schemes for Hamilton-Jacobi Equations , 1999, SIAM J. Sci. Comput..

[63]  Peter J. O'Rourke,et al.  The TAB method for numerical calculation of spray droplet breakup , 1987 .