Capacities: From Information Theory to Extremal Set Theory
暂无分享,去创建一个
[1] Zsolt Tuza,et al. On the maximum number of qualitatively independent partitions , 1989, J. Comb. Theory, Ser. A.
[2] R. McEliece,et al. The Lovasz bound and some generalizations , 1978 .
[3] E. Sperner. Ein Satz über Untermengen einer endlichen Menge , 1928 .
[4] Rudolf Ahlswede,et al. Coloring hypergraphs: A new approach to multi-user source coding, 1 , 1979 .
[5] Luisa Gargano,et al. Sperner capacities , 1993, Graphs Comb..
[6] Alfréd Rényi,et al. Foundations of Probability , 1971 .
[7] R. A. Cuninghame-Green,et al. Packing and Covering in Combinatorics , 1980 .
[8] László Lovász,et al. On the Shannon capacity of a graph , 1979, IEEE Trans. Inf. Theory.
[9] R. M. Capocelli. Sequences: combinatorics, compression, security, and transmission , 1990 .
[10] László Lovász,et al. On the ratio of optimal integral and fractional covers , 1975, Discret. Math..
[11] Gábor Simonyi,et al. A Sperner-Type Theorem and Qualitative Independence , 1992, J. Comb. Theory, Ser. A.
[12] I. Csiszár. Information Theory , 1981 .
[13] E. Gilbert. A comparison of signalling alphabets , 1952 .
[14] D. Blackwell,et al. The Capacity of a Class of Channels , 1959 .
[15] B. Bollobás. On generalized graphs , 1965 .
[16] M. Tsfasman,et al. Modular curves, Shimura curves, and Goppa codes, better than Varshamov‐Gilbert bound , 1982 .
[17] Claude E. Shannon,et al. The zero error capacity of a noisy channel , 1956, IRE Trans. Inf. Theory.
[18] I. Csiszár,et al. On the capacity of the arbitrarily varying channel for maximum probability of error , 1981 .
[19] Gérard D. Cohen,et al. Zero-error capacities and very different sequences , 1990 .
[20] Willem H. Haemers,et al. On Some Problems of Lovász Concerning the Shannon Capacity of a Graph , 1979, IEEE Trans. Inf. Theory.
[21] Alexander Schrijver,et al. A comparison of the Delsarte and Lovász bounds , 1979, IEEE Trans. Inf. Theory.
[22] Robert J. McEliece,et al. New upper bounds on the rate of a code via the Delsarte-MacWilliams inequalities , 1977, IEEE Trans. Inf. Theory.
[23] L. A. Shepp,et al. The Sperner Capacity of Linear and Nonlinear Codes for the Cyclic Triangle , 1993 .
[24] Feller William,et al. An Introduction To Probability Theory And Its Applications , 1950 .
[25] by Arch. Rat. Mech. Anal. , 2022 .
[26] Luisa Gargano,et al. Qualitative Independence and Sperner Problems for Directed Graphs , 1992, J. Comb. Theory, Ser. A.