Stimulus intensity affects early sensory processing: visual contrast modulates evoked gamma-band activity in human EEG.

[1]  Christoph S. Herrmann,et al.  Time-frequency analysis of target detection reveals an early interface between bottom-up and top-down processes in the gamma-band , 2006, NeuroImage.

[2]  R. Shapley,et al.  LFP power spectra in V1 cortex: the graded effect of stimulus contrast. , 2005, Journal of neurophysiology.

[3]  Gareth R. Barnes,et al.  The missing link: analogous human and primate cortical gamma oscillations , 2005, NeuroImage.

[4]  J. Faubert,et al.  Visual Evoked Potentials and Reaction Time Measurements to Motion-reversal Luminance- and Texture-defined Stimuli , 2005, Documenta Ophthalmologica.

[5]  Steven A. Hillyard,et al.  Identification of the neural sources of the pattern-reversal VEP , 2005, NeuroImage.

[6]  S. Luck,et al.  Sources of attention-sensitive visual event-related potentials , 2005, Brain Topography.

[7]  Matthias M. Müller,et al.  Induced gamma band responses: an early marker of memory encoding and retrieval , 2004, Neuroreport.

[8]  K. Pope,et al.  Cognitive tasks augment gamma EEG power , 2004, Clinical Neurophysiology.

[9]  A. Engel,et al.  Cognitive functions of gamma-band activity: memory match and utilization , 2004, Trends in Cognitive Sciences.

[10]  Stefan Debener,et al.  Size matters: effects of stimulus size, duration and eccentricity on the visual gamma-band response , 2004, Clinical Neurophysiology.

[11]  Mark W. Greenlee,et al.  Similarities and dissimilarities between pattern VEPs and motion VEPs , 1998, Documenta Ophthalmologica.

[12]  J. A. Movshon,et al.  The dependence of response amplitude and variance of cat visual cortical neurones on stimulus contrast , 1981, Experimental Brain Research.

[13]  M. Onofrj,et al.  The effect of contrast and spatial frequency on the visual evoked potential of the hooded rat , 2004, Experimental Brain Research.

[14]  T. Yamazaki,et al.  Multiple Equivalent Current Dipole Source Localization of Visual Event-Related Potentials During Oddball Paradigm With Motor Response , 2004, Brain Topography.

[15]  Burkhard Maess,et al.  Memory-matches evoke human gamma-responses , 2004, BMC Neuroscience.

[16]  Etienne Hugues,et al.  Augmentation of induced visual gamma activity by increased task complexity , 2003, The European journal of neuroscience.

[17]  Daeyeol Lee Coherent Oscillations in Neuronal Activity of the Supplementary Motor Area during a Visuomotor Task , 2003, The Journal of Neuroscience.

[18]  P. Fries,et al.  Is synchronized neuronal gamma activity relevant for selective attention? , 2003, Brain Research Reviews.

[19]  D. Senkowski,et al.  Effects of task difficulty on evoked gamma activity and ERPs in a visual discrimination task , 2002, Clinical Neurophysiology.

[20]  D Yves von Cramon,et al.  Amplitude differences of evoked alpha and gamma oscillations in two different age groups. , 2002, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[21]  A. Vassilev,et al.  On the delay in processing high spatial frequency visual information: reaction time and VEP latency study of the effect of local intensity of stimulation , 2002, Vision Research.

[22]  S. Hillyard,et al.  Cortical sources of the early components of the visual evoked potential , 2002, Human brain mapping.

[23]  W. Singer,et al.  Dynamic predictions: Oscillations and synchrony in top–down processing , 2001, Nature Reviews Neuroscience.

[24]  Andreas Keil,et al.  Functional correlates of macroscopic high-frequency brain activity in the human visual system , 2001, Neuroscience & Biobehavioral Reviews.

[25]  R. Knight,et al.  Mechanisms of human attention: event-related potentials and oscillations , 2001, Neuroscience & Biobehavioral Reviews.

[26]  N. Logothetis,et al.  Neurophysiological investigation of the basis of the fMRI signal , 2001, Nature.

[27]  Ivan Bodis-Wollner,et al.  Wavelet Transform of the EEG Reveals Differences in Low and High Gamma Responses to Elementary Visual Stimuli , 2001, Clinical EEG.

[28]  J. Bullier,et al.  Cortical mapping of gamma oscillations in areas V1 and V4 of the macaque monkey , 2001, Visual Neuroscience.

[29]  Richard B Buxton,et al.  Putting spatial attention on the map: timing and localization of stimulus selection processes in striate and extrastriate visual areas , 2001, Vision Research.

[30]  R. Desimone,et al.  Modulation of Oscillatory Neuronal Synchronization by Selective Visual Attention , 2001, Science.

[31]  C. Basar-Eroglu,et al.  Gamma response of the brain: a multifunctional oscillation that represents bottom-up with top-down processing. , 2001, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[32]  Matthias M. Müller,et al.  Modulation of induced gamma band activity in the human EEG by attention and visual information processing. , 2000, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[33]  E. Basar,et al.  Brain oscillations in perception and memory. , 2000, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[34]  A. Tzelepi,et al.  Functional properties of sub-bands of oscillatory brain waves to pattern visual stimulation in man , 2000, Clinical Neurophysiology.

[35]  Matthias M. Müller,et al.  Selective visual-spatial attention alters induced gamma band responses in the human EEG , 1999, Clinical Neurophysiology.

[36]  A Kawana,et al.  Short- and long-range synchronous activities in dimming detectors of the frog retina , 1999, Visual Neuroscience.

[37]  R. Eckhorn,et al.  Visual stimulation elicits locked and induced gamma oscillations in monkey intracortical- and EEG-potentials, but not in human EEG , 1999, Experimental Brain Research.

[38]  W. Singer,et al.  Synchronous oscillations in the cat retina , 1999, Vision Research.

[39]  C. Herrmann,et al.  Gamma responses and ERPs in a visual classification task , 1999, Clinical Neurophysiology.

[40]  E Başar,et al.  Early gamma response is sensory in origin: a conclusion based on cross-comparison of results from multiple experimental paradigms. , 1998, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[41]  Victor A. F. Lamme,et al.  Neuronal synchrony does not represent texture segregation , 1998, Nature.

[42]  Tamer Demiralp,et al.  The phase‐locking of auditory gamma band responses in humans is sensitive to task processing , 1997, Neuroreport.

[43]  Michael Bach,et al.  Contrast dependency of motion-onset and pattern-reversal VEPs: Interaction of stimulus type, recording site and response component , 1997, Vision Research.

[44]  E. Basar,et al.  Gamma-band responses in the brain: a short review of psychophysiological correlates and functional significance. , 1996, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[45]  J. Pernier,et al.  Stimulus Specificity of Phase-Locked and Non-Phase-Locked 40 Hz Visual Responses in Human , 1996, The Journal of Neuroscience.

[46]  L. Marshall,et al.  Event-related gamma band activity during passive and active oddball tasks. , 1996, Neuroreport.

[47]  W. Freeman,et al.  Spatio-temporal correlations in human gamma band electrocorticograms. , 1996, Electroencephalography and clinical neurophysiology.

[48]  J. Pernier,et al.  Gamma‐range Activity Evoked by Coherent Visual Stimuli in Humans , 1995, The European journal of neuroscience.

[49]  M. Gazzaniga,et al.  Combined spatial and temporal imaging of brain activity during visual selective attention in humans , 1994, Nature.

[50]  A. Vassilev,et al.  Spatial-frequency specific contrast gain and flicker masking of human transient VEP* , 1994, Vision Research.

[51]  J. Artigas,et al.  Influence of the contrast sensitivity function on the reaction time , 1993, Vision Research.

[52]  W. Singer,et al.  Temporal coding in the visual cortex: new vistas on integration in the nervous system , 1992, Trends in Neurosciences.

[53]  M. Young,et al.  On oscillating neuronal responses in the visual cortex of the monkey. , 1992, Journal of neurophysiology.

[54]  M. Tovée,et al.  Oscillatory activity is not evident in the primate temporal visual cortex with static stimuli , 1992, Neuroreport.

[55]  R. Müller,et al.  The influence of grating contrast on the human cortical potential visually evoked by motion. , 1988, Acta neurobiologiae experimentalis.

[56]  I. Bodis-Wollner,et al.  The effect of blur and contrast on VEP latency: comparison between check and sinusoidal and grating patterns. , 1987, Electroencephalography and clinical neurophysiology.

[57]  M. Ariel,et al.  Rhythmicity in rabbit retinal ganglion cell responses , 1983, Vision Research.

[58]  M. J. Wright,et al.  The effects of contrast and length of gratings on the visual evoked potential , 1982, Vision Research.

[59]  H Spekreijse,et al.  Contrast evoked responses in man. , 1973, Vision research.

[60]  J. Kulikowski,et al.  Electrophysiological and Psychophysical Responses to Modulation of Contrast of a Grating Pattern , 1972, Perception.

[61]  F. Campbell,et al.  The visual evoked potential as a function of contrast of a grating pattern , 1972, The Journal of physiology.