Eco-friendly sol-gel derived sodium-based ormolytes for electrochromic devices

Abstract The sol-gel method was employed in the preparation of organic/inorganic biohybrid ormolytes composed of a di-urethane cross-linked poly(e-caprolactone) (PCL(530))/siloxane matrix doped for the first time with different amounts of sodium triflate (NaCF 3 SO 3 .xH 2 O). The samples are semi-crystalline and thermally stable up to ca. 250 °C. The maximum ionic conductivity (4.1 × 10 −7 , 1.5 × 10 −4 and 8.8 × 10 −4  S cm −1 at 30, 49 and 97 °C, respectively) was attained at n’ = 6, where n’ (composition) corresponds to the number of ester (C( O)(CH 2 ) 5 O) repeat units of PCL(530) per sodium ion. Selected ormolytes were employed in the construction and characterization of prototype electrochromic devices (ECDs). Tests with ECDs incorporating poly(oxyethylene)/siloxane (U(600)) n NaCF 3 SO 3 (where n is the ratio of ether (OCH 2 CH 2 ) repeat units per sodium ion) ormolytes already reported were also performed. The devices exhibited fast switching time of ca. 30 s. At 555 nm the ECD@U600 63 Na device exhibited the highest optical density value (Δ(OD) = 0.12) and coloration efficiency for bleaching (CE out 131 cm 2 C −1 , 50 th cycle) and good optical memory. The ECD@PCL 58 Na device exhibited a CE value for coloration (0.12 versus 0.061) similar to that of ECD@U600 63 Na (CE in −116 cm 2 C −1 , 50 th cycle) and a very good stability. However the Δ(OD) value for the latter device was much higher.

[1]  Xuehong Lu,et al.  Hybrid Materials and Polymer Electrolytes for Electrochromic Device Applications , 2012, Advanced materials.

[2]  J. Tarascon,et al.  Optimization of Na-Ion Battery Systems Based on Polyanionic or Layered Positive Electrodes and Carbon Anodes , 2016 .

[3]  Arild Gustavsen,et al.  Properties, Requirements and Possibilities of Smart Windows for Dynamic Daylight and Solar Energy Control in Buildings: A State-of-the-Art Review , 2010 .

[4]  E. Fortunato,et al.  Electrochromic devices incorporating biohybrid electrolytes doped with a lithium salt, an ionic liquid or a mixture of both , 2015 .

[5]  Jean-Marie Tarascon,et al.  In search of an optimized electrolyte for Na-ion batteries , 2012 .

[6]  M. Ratner,et al.  Ionic conductivity in poly(diethylene glycol-carbonate)/sodium triflate complexes , 1997 .

[7]  Elvira Fortunato,et al.  Green Li+- and Er3+-doped poly(ε-caprolactone)/siloxane biohybrid electrolytes for smart electrochromic windows , 2014 .

[8]  J. R. Stevens,et al.  Ion association effects and phase separation in poly(propylene oxide) modified poly(dimethylsiloxane) complexed with triflate salts , 1992 .

[9]  P. Jacobsson,et al.  Urethane cross-linked poly(oxyethylene)/siliceous nanohybrids doped with Eu3+ ions. Part I: Coordinating ability of the host matrix , 2004 .

[10]  R. Chandrasekaran,et al.  Preparation and characterization of a new polymer electrolyte (PEO:NaClO3) for battery application , 2001 .

[11]  Jeffrey W. Fergus,et al.  Ceramic and polymeric solid electrolytes for lithium-ion batteries , 2010 .

[12]  S. Karan,et al.  Vibrational spectroscopy and ionic conductivity of polyethylene oxide-NaClO4-CuO nanocomposite. , 2011, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[13]  C. Brinker,et al.  Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing , 1990 .

[14]  R. Mortimer,et al.  New Electrochromic Materials , 2002, Science progress.

[15]  Adélio Rodrigues Gaspar,et al.  Evaluation of electrochromic windows impact in the energy performance of buildings in Mediterranean climates , 2014 .

[16]  Seung M. Oh,et al.  An advanced sodium-ion rechargeable battery based on a tin-carbon anode and a layered oxide framework cathode. , 2013, Physical chemistry chemical physics : PCCP.

[17]  Christopher P. Rhodes,et al.  Cation–anion and cation–polymer interactions in (PEO)nNaCF3SO3 (n=1–80) , 1999 .

[18]  V. Bermudez,et al.  Vibrational spectra and microstructure of poly(ε-caprolactone)/siloxane biohybrids doped with lithium triflate , 2008 .

[19]  Pedro Gómez-Romero,et al.  Functional Hybrid Materials , 2004 .

[20]  Ding Zhang,et al.  Electrochemical properties of the solid polymer electrolyte PEO20–LiSO3CF3–Urea1.5 , 2011 .

[21]  R. Frech,et al.  A spectroscopic and conductivity comparison study of linear poly(N-methylethylenimine) with lithium triflate and sodium triflate , 2003 .

[22]  M. Silva,et al.  Sol–gel-derived POE/siliceous hybrids doped with Na+ ions: morphology and ionic conductivity , 2003 .

[23]  Donghan Kim,et al.  Sodium‐Ion Batteries , 2013 .

[24]  Teófilo Rojo,et al.  Na-ion batteries, recent advances and present challenges to become low cost energy storage systems , 2012 .

[25]  Z. Osman Comparative studies on plasticized and unplasticized polyacrylonitrile (PAN) polymer electrolytes containing lithium and sodium salts , 2011 .

[26]  E. Fortunato,et al.  Li(+)- and Eu(³+)-doped poly(ε-caprolactone)/siloxane biohybrid electrolytes for electrochromic devices. , 2011, ACS applied materials & interfaces.

[27]  M. Armand,et al.  Composite PEOn:NaTFSI polymer electrolyte: Preparation, thermal and electrochemical characterization , 2014 .

[28]  Justin A. Kerszulis,et al.  Four shades of brown: tuning of electrochromic polymer blends toward high-contrast eyewear. , 2015, ACS applied materials & interfaces.

[29]  J. R. Stevens,et al.  Dissociated ions and ion-ion interactions in poly(ethylene oxide) based NaCF3SO3 complexes , 1990 .

[30]  C. Granqvist Electrochromics for smart windows: Oxide-based thin films and devices , 2014 .

[31]  L. Rodrigues,et al.  Mg2+-doped poly(ɛ-caprolactone)/siloxane biohybrids , 2010 .

[32]  Hsin‐Lung Chen,et al.  Formation of Segregation Morphology in Crystalline/Amorphous Polymer Blends: Molecular Weight Effect , 1998 .

[33]  Z. Osman,et al.  A comparative study of lithium and sodium salts in PAN-based ion conducting polymer electrolytes , 2010 .

[34]  D. Hutmacher,et al.  The return of a forgotten polymer : Polycaprolactone in the 21st century , 2009 .

[35]  Luís D. Carlos,et al.  Sol−Gel Derived Urea Cross-Linked Organically Modified Silicates. 2. Blue-Light Emission , 1999 .

[36]  V. Bermudez,et al.  Cation coordination in mono-urethanesil hybrids doped with sodium triflate , 2003 .

[37]  C. Granqvist Oxide electrochromics: An introduction to devices and materials , 2012 .

[38]  K. Page,et al.  An Overview of Polymer Electrolyte Membranes for Fuel Cell Applications , 2012 .

[39]  I. Jerman,et al.  Imidazolium-based ionic liquid derivatives for application in electrochromic devices , 2008 .

[40]  José A. Pomposo,et al.  All-plastic electrochromic devices based on PEDOT as switchable optical attenuator in the near IR , 2008 .

[41]  L. Nazar,et al.  Sodium and sodium-ion energy storage batteries , 2012 .

[42]  V. de Zea Bermudez,et al.  Sol-gel derived Li+-doped poly(ε-caprolactone)/siloxane biohybrid electrolytes , 2006 .

[43]  P. V. Wright,et al.  Complexes of alkali metal ions with poly(ethylene oxide) , 1973 .

[44]  C. Avellaneda,et al.  Electrochromism in Materials Prepared by the Sol-Gel Process , 1997 .

[45]  Jenq-Neng Hwang,et al.  Multicolored Electrochromism in Polymers: Structures and Devices , 2004 .

[46]  David R. Rosseinsky,et al.  Electrochromic Systems and the Prospects for Devices , 2001 .

[47]  A. K. Sharma,et al.  Structural and electrical properties of pure and NaBr doped poly (vinyl alcohol) (PVA) polymer electrolyte films for solid state battery applications , 2007 .