A special place of Boolean quadratic polytopes among other combinatorial polytopes

We consider several families of combinatorial polytopes associated with the following NP-complete problems: maximum cut, Boolean quadratic programming, quadratic linear ordering, quadratic assignment, set partition, set packing, stable set, 3-assignment. For comparing two families of polytopes we use the following method. We say that a family

[1]  Defeng Sun,et al.  Polyhedral Methods for Solving Three Index Assignment Problems , 2000 .

[2]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[4]  Egon Balas,et al.  Facets of the three-index assignment polytope , 1989, Discret. Appl. Math..

[5]  Manfred W. Padberg,et al.  The boolean quadric polytope: Some characteristics, facets and relatives , 1989, Math. Program..

[6]  Gérard Cornuéjols,et al.  Extended formulations in combinatorial optimization , 2010, 4OR.

[7]  Caterina De Simone,et al.  The cut polytope and the Boolean quadric polytope , 1990, Discret. Math..

[8]  Michel Deza,et al.  Geometry of cuts and metrics , 2009, Algorithms and combinatorics.

[9]  George B. Dantzig,et al.  Solution of a Large-Scale Traveling-Salesman Problem , 1954, Oper. Res..

[10]  Louis J. Billera,et al.  All 0–1 polytopes are traveling salesman polytopes , 1996, Comb..

[11]  Hans Raj Tiwary,et al.  Exponential Lower Bounds for Polytopes in Combinatorial Optimization , 2011, J. ACM.

[13]  Tomomi Matsui,et al.  NP-Completeness of Non-Adjacency Relations on Some 0-1 Polytopes , 1998 .

[14]  Martin Grötschel,et al.  Facets of the linear ordering polytope , 1985, Math. Program..

[15]  V. Kaibel Extended Formulations in Combinatorial Optimization , 2011, 1104.1023.

[16]  Samuel Fiorini A combinatorial study of partial order polytopes , 2003, Eur. J. Comb..

[17]  A. Maksimenko k-Neighborly Faces of the Boolean Quadric Polytopes , 2014 .

[18]  Christoph Buchheim,et al.  Exact Algorithms for the Quadratic Linear Ordering Problem , 2010, INFORMS J. Comput..

[19]  A. Maksimenko,et al.  The Common Face of some 0/1-Polytopes with NP-Complete Nonadjacency Relation , 2014 .

[20]  M. R. Rao,et al.  The travelling salesman problem and a class of polyhedra of diameter two , 1974, Math. Program..

[21]  A. Maksimenko,et al.  An analog of the cook theorem for polytopes , 2012 .

[22]  Christos H. Papadimitriou,et al.  The adjacency relation on the traveling salesman polytope is NP-Complete , 1978, Math. Program..

[23]  R. Euler Odd cycles and a class of facets of the axial 3-index assignment polytope , 1987 .

[24]  Tomomi Matsui,et al.  A study of the quadratic semi-assignment polytope , 2009, Discret. Optim..

[25]  Hans Raj Tiwary,et al.  On the extension complexity of combinatorial polytopes , 2013, Math. Program..

[26]  H. P. Young,et al.  On permutations and permutation polytopes , 1978 .

[27]  M. Yannakakis Expressing combinatorial optimization problems by linear programs , 1991, Symposium on the Theory of Computing.

[28]  V. Chvátal On certain polytopes associated with graphs , 1975 .

[29]  G. Ziegler Lectures on 0/1-Polytopes , 1999, math/9909177.

[30]  Volker Kaibel,et al.  A Short Proof that the Extension Complexity of the Correlation Polytope Grows Exponentially , 2013, Discret. Comput. Geom..