p53 and metabolism

Although metabolic alterations have been observed in cancer for almost a century, only recently have the mechanisms underlying these changes been identified and the importance of metabolic transformation realized. p53 has been shown to respond to metabolic changes and to influence metabolic pathways through several mechanisms. The contributions of these activities to tumour suppression are complex and potentially rather surprising: some reflect the function of basal p53 levels that do not require overt activation and others might even promote, rather than inhibit, tumour progression.

[1]  T. Russo,et al.  p53 Suppresses the Nrf2-dependent Transcription of Antioxidant Response Genes* , 2006, Journal of Biological Chemistry.

[2]  J. Richter,et al.  CPEB regulation of human cellular senescence, energy metabolism, and p53 mRNA translation. , 2008, Genes & development.

[3]  A. Giaccia,et al.  Hypoxia induces p53 accumulation through MDM2 down-regulation and inhibition of E6-mediated degradation. , 1999, Cancer research.

[4]  David Beach,et al.  Glycolytic enzymes can modulate cellular life span. , 2005, Cancer research.

[5]  J. Rathmell,et al.  Glucose Metabolism Attenuates p53 and Puma-dependent Cell Death upon Growth Factor Deprivation* , 2008, Journal of Biological Chemistry.

[6]  L. Donehower,et al.  p53 in embryonic development: maintaining a fine balance , 1999, Cellular and Molecular Life Sciences CMLS.

[7]  Yanping Zhang,et al.  Putting a Finger on Growth Surveillance: Insight into MDM2 Zinc Finger-Ribosomal Protein Interactions , 2007, Cell cycle.

[8]  Y. Pan,et al.  p53 cannot be induced by hypoxia alone but responds to the hypoxic microenvironment , 2004, Oncogene.

[9]  Christopher Y. Park,et al.  Ribosomal mutations cause p53-mediated dark skin and pleiotropic effects , 2008, Nature Genetics.

[10]  L. Strong,et al.  Gain of Function of a p53 Hot Spot Mutation in a Mouse Model of Li-Fraumeni Syndrome , 2004, Cell.

[11]  Masayuki Orimo,et al.  A crucial role for adipose tissue p53 in the regulation of insulin resistance , 2009, Nature Medicine.

[12]  L. Neckers,et al.  Stabilization of wild-type p53 by hypoxia-inducible factor 1α , 1998, Nature.

[13]  Jennifer E. Van Eyk,et al.  c-Myc suppression of miR-23 enhances mitochondrial glutaminase and glutamine metabolism , 2016 .

[14]  D. Hardie,et al.  AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy , 2007, Nature Reviews Molecular Cell Biology.

[15]  Keshav K. Singh,et al.  p53 regulates mtDNA copy number and mitocheckpoint pathway , 2009, Journal of carcinogenesis.

[16]  R. Deberardinis,et al.  Beyond aerobic glycolysis: Transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis , 2007, Proceedings of the National Academy of Sciences.

[17]  Marie-Pier Champagne,et al.  The Polycomb Group Gene Bmi1 Regulates Antioxidant Defenses in Neurons by Repressing p53 Pro-Oxidant Activity , 2009, The Journal of Neuroscience.

[18]  J. Varley Germline TP 53 Mutations and Li-Fraumeni Syndrome , 2003 .

[19]  Y. Kinoshita,et al.  The role of p53 in neuronal cell death , 2000, Cell Death and Differentiation.

[20]  Craig B. Thompson,et al.  Role of Bcl-2 family proteins in a non-apoptotic programmed cell death dependent on autophagy genes , 2004, Nature Cell Biology.

[21]  K. Meletis,et al.  p 53 suppresses the self-renewal of adult neural stem cells , 2005 .

[22]  A. Levine,et al.  The coordinate regulation of the p53 and mTOR pathways in cells. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[23]  Robin Mathew,et al.  Role of autophagy in cancer , 2007, Nature Reviews Cancer.

[24]  D. Klionsky,et al.  Autophagosome formation: core machinery and adaptations , 2007, Nature Cell Biology.

[25]  Eyal Gottlieb,et al.  Metabolic transformation in cancer. , 2009, Carcinogenesis.

[26]  K. Chien,et al.  p 53 Is a Transcriptional Activator of the Muscle-specific Phosphoglycerate Mutase Gene and Contributes in Vivo to the Control of Its Cardiac Expression 1 , 2000 .

[27]  O. Warburg On the origin of cancer cells. , 1956, Science.

[28]  P. Leder,et al.  Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. , 2006, Cancer cell.

[29]  T. Jacks,et al.  Mutant p53 Gain of Function in Two Mouse Models of Li-Fraumeni Syndrome , 2004, Cell.

[30]  Jian Yu,et al.  PUMA overexpression induces reactive oxygen species generation and proteasome-mediated stathmin degradation in colorectal cancer cells. , 2005, Cancer research.

[31]  G. Shadel,et al.  Loss of p53 causes mitochondrial DNA depletion and altered mitochondrial reactive oxygen species homeostasis. , 2009, Biochimica et biophysica acta.

[32]  Joseph R. Milner,et al.  An ATP/ADP-Dependent Molecular Switch Regulates the Stability of p53-DNA Complexes , 1999, Molecular and Cellular Biology.

[33]  Simon Tavaré,et al.  Autophagy mediates the mitotic senescence transition. , 2009, Genes & development.

[34]  Arnold J. Levine,et al.  Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[35]  Tsung-Cheng Chang,et al.  c-Myc suppression of miR-23 enhances mitochondrial glutaminase and glutamine metabolism , 2009, Nature.

[36]  Manuel Serrano,et al.  The Arf/p53 pathway in cancer and aging. , 2008, Cancer research.

[37]  Y. Liu,et al.  p53 regulates hematopoietic stem cell quiescence. , 2009, Cell stem cell.

[38]  Todd D. Westergard,et al.  The p53-cathepsin axis cooperates with ROS to activate programmed necrotic death upon DNA damage , 2009, Proceedings of the National Academy of Sciences.

[39]  R. Deberardinis,et al.  The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. , 2008, Cell metabolism.

[40]  Earl F. Glynn,et al.  Prevention of the neurocristopathy Treacher Collins syndrome through inhibition of p53 function , 2008, Nature Medicine.

[41]  S. Minucci,et al.  A p53-p66Shc signalling pathway controls intracellular redox status, levels of oxidation-damaged DNA and oxidative stress-induced apoptosis , 2002, Oncogene.

[42]  A. Rivera,et al.  The p53-induced Gene-6 (Proline Oxidase) Mediates Apoptosis through a Calcineurin-dependent Pathway* , 2005, Journal of Biological Chemistry.

[43]  E. May,et al.  Reciprocal down-regulation of p53 and SOD2 gene expression–implication in p53 mediated apoptosis , 2001, Oncogene.

[44]  K. Ryan,et al.  p73 regulates DRAM-independent autophagy that does not contribute to programmed cell death , 2007, Cell Death and Differentiation.

[45]  Ajjai Alva,et al.  Regulation of an ATG7-beclin 1 Program of Autophagic Cell Death by Caspase-8 , 2004, Science.

[46]  R. Deberardinis,et al.  Autophagy in metazoans: cell survival in the land of plenty , 2005, Nature Reviews Molecular Cell Biology.

[47]  L. Mayo,et al.  The PTEN, Mdm2, p53 tumor suppressor-oncoprotein network. , 2002, Trends in biochemical sciences.

[48]  A. Gudkov,et al.  Chemoprotection from p53-dependent apoptosis: potential clinical applications of the p53 inhibitors. , 2001, Biochemical pharmacology.

[49]  Sam W. Lee,et al.  Influence of Induced Reactive Oxygen Species in p53-Mediated Cell Fate Decisions , 2003, Molecular and Cellular Biology.

[50]  K. Vousden,et al.  Coping with stress: multiple ways to activate p53 , 2007, Oncogene.

[51]  S. Anderson,et al.  Sugar and fat – that's where it's at: metabolic changes in tumors , 2008, Breast Cancer Research.

[52]  M. Armoni,et al.  The Tumor Suppressor p53 Down-Regulates Glucose Transporters GLUT1 and GLUT4 Gene Expression , 2004, Cancer Research.

[53]  G. Atwal,et al.  Single-nucleotide polymorphisms in the p53 pathway regulate fertility in humans , 2009, Proceedings of the National Academy of Sciences.

[54]  Y. Nakamura,et al.  Identification of seven genes regulated by wild-type p53 in a colon cancer cell line carrying a well-controlled wild-type p53 expression system. , 1999, Oncology research.

[55]  A. Levine,et al.  The regulation of AMPK beta1, TSC2, and PTEN expression by p53: stress, cell and tissue specificity, and the role of these gene products in modulating the IGF-1-AKT-mTOR pathways. , 2007, Cancer research.

[56]  Jacqueline Lehmann,et al.  TP53 Status and Response to Chemotherapy in Breast Cancer , 2008, Pathobiology.

[57]  Nektarios Tavernarakis,et al.  Regulation of autophagy by cytoplasmic p53 , 2008, Nature Cell Biology.

[58]  E. Morselli,et al.  Stimulation of autophagy by the p53 target gene Sestrin2 , 2009, Cell cycle.

[59]  H. Scrable,et al.  Antagonistic pleiotropy and p53 , 2009, Mechanisms of Ageing and Development.

[60]  C. Prives,et al.  Blinded by the Light: The Growing Complexity of p53 , 2009, Cell.

[61]  B. Zhivotovsky,et al.  The Warburg Effect returns to the cancer stage. , 2009, Seminars in cancer biology.

[62]  Kevin Bray,et al.  Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. , 2006, Cancer cell.

[63]  T. D. Schneider,et al.  Discovery of novel tumor suppressor p53 response elements using information theory , 2008, Nucleic acids research.

[64]  C. Thompson,et al.  Akt-dependent transformation: there is more to growth than just surviving , 2005, Oncogene.

[65]  Yoichi Taya,et al.  Cyclin-dependent Kinases Phosphorylate p73 at Threonine 86 in a Cell Cycle-dependent Manner and Negatively Regulate p73* , 2003, Journal of Biological Chemistry.

[66]  Kevin Ryan,et al.  The alternative product from the human CDKN2A locus, p14ARF, participates in a regulatory feedback loop with p53 and MDM2 , 1998, The EMBO journal.

[67]  E. Morselli,et al.  Control of autophagy by oncogenes and tumor suppressor genes , 2009, Cell Death and Differentiation.

[68]  N. Tanaka,et al.  Loss of p53 enhances catalytic activity of IKKβ through O-linked β-N-acetyl glucosamine modification , 2009, Proceedings of the National Academy of Sciences.

[69]  S. Snyder,et al.  p53 Mediates Cellular Dysfunction and Behavioral Abnormalities in Huntington’s Disease , 2005, Neuron.

[70]  P. Hainaut,et al.  Redox signalling and transition metals in the control of the p53 pathway. , 2000, Biochemical pharmacology.

[71]  Govind Bhagat,et al.  Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. , 2003, The Journal of clinical investigation.

[72]  A. Nakagawara,et al.  Activation of AMP-activated Protein Kinase Induces p53-dependent Apoptotic Cell Death in Response to Energetic Stress* , 2008, Journal of Biological Chemistry.

[73]  A. Levine,et al.  The tumor suppressor p53: Cancer and aging , 2008, Cell cycle.

[74]  M. Armoni,et al.  The Tumor Suppressor p 53 Down-Regulates Glucose Transporters GLUT 1 and GLUT 4 Gene Expression , 2004 .

[75]  O. Feron,et al.  Pyruvate into lactate and back: from the Warburg effect to symbiotic energy fuel exchange in cancer cells. , 2009, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[76]  Daniel J Klionsky,et al.  Development by self-digestion: molecular mechanisms and biological functions of autophagy. , 2004, Developmental cell.

[77]  N. Denko,et al.  Hypoxia, HIF1 and glucose metabolism in the solid tumour , 2008, Nature Reviews Cancer.

[78]  W. Ludwig,et al.  Stress-induced activation of the p53 tumor suppressor in leukemia cells and normal lymphocytes requires mitochondrial activity and reactive oxygen species. , 2005, Blood.

[79]  A. Carrier,et al.  Tumor protein 53-induced nuclear protein 1 is a major mediator of p53 antioxidant function. , 2009, Cancer research.

[80]  K. Meletis,et al.  p53 suppresses the self-renewal of adult neural stem cells , 2005, Development.

[81]  A. Shakya,et al.  Oct1 loss of function induces a coordinate metabolic shift that opposes tumorigenicity , 2009, Nature Cell Biology.

[82]  M. Serrano,et al.  The Arf / p 53 Pathway in Cancer and Aging , 2008 .

[83]  Russell G. Jones,et al.  Tumor suppressors and cell metabolism: a recipe for cancer growth. , 2009, Genes & development.

[84]  Oksana Gavrilova,et al.  p53 Regulates Mitochondrial Respiration , 2006, Science.

[85]  J C Reed,et al.  Somatic Frameshift Mutations in the BAX Gene in Colon Cancers of the Microsatellite Mutator Phenotype , 1997, Science.

[86]  M. Murphy,et al.  ARF Induces Autophagy by Virtue of Interaction with Bcl-xl* , 2009, Journal of Biological Chemistry.

[87]  Saroj P. Mathupala,et al.  Glucose Catabolism in Cancer Cells , 2001, The Journal of Biological Chemistry.

[88]  C. López-Otín,et al.  Tissue-specific Autophagy Alterations and Increased Tumorigenesis in Mice Deficient in Atg4C/Autophagin-3* , 2007, Journal of Biological Chemistry.

[89]  Yusuke Nakamura,et al.  Identification of ALDH4 as a p53-inducible gene and its protective role in cellular stresses , 2004, Journal of Human Genetics.

[90]  Yusuke Nakamura,et al.  Mutation of RRM2B, encoding p53-controlled ribonucleotide reductase (p53R2), causes severe mitochondrial DNA depletion , 2007, Nature Genetics.

[91]  B. Thiers Central Role of p53 in the Suntan Response and Pathologic Hyperpigmentation , 2008 .

[92]  Yiling Lu,et al.  Exploiting the PI3K/AKT Pathway for Cancer Drug Discovery , 2005, Nature Reviews Drug Discovery.

[93]  E. Cho,et al.  A nucleocytoplasmic malate dehydrogenase regulates p53 transcriptional activity in response to metabolic stress , 2009, Cell Death and Differentiation.

[94]  A. Giaccia,et al.  Advances in Brief Hypoxia Induces p 53 Accumulation through MDM 2 Down-Regulation and Inhibition of E 6-mediated Degradation 1 , 1999 .

[95]  Peitan Liu,et al.  PIFITHRIN-&agr; ATTENUATES P53-MEDIATED APOPTOSIS AND IMPROVES CARDIAC FUNCTION IN RESPONSE TO MYOCARDIAL ISCHEMIA/REPERFUSION IN AGED RATS , 2006, Shock.

[96]  E. Morselli,et al.  Mutant p53 protein localized in the cytoplasm inhibits autophagy , 2008, Cell cycle.

[97]  Anthony Mancuso,et al.  Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction , 2008, Proceedings of the National Academy of Sciences.

[98]  T. Mak,et al.  Regulation of PTEN transcription by p53. , 2001, Molecular cell.

[99]  A. Giaccia,et al.  Hypoxia Links ATR and p53 through Replication Arrest , 2002, Molecular and Cellular Biology.

[100]  P. Dagher Apoptosis in ischemic renal injury: roles of GTP depletion and p53. , 2004, Kidney international.

[101]  Eyal Gottlieb,et al.  TIGAR, a p53-Inducible Regulator of Glycolysis and Apoptosis , 2006, Cell.

[102]  Sébastien Bonnet,et al.  A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. , 2007, Cancer cell.

[103]  D. Sabatini,et al.  Cancer Cell Metabolism: Warburg and Beyond , 2008, Cell.

[104]  S. Bonhoeffer,et al.  Cooperation and Competition in the Evolution of ATP-Producing Pathways , 2001, Science.

[105]  A. Levine,et al.  p53 regulates maternal reproduction through LIF , 2007, Nature.

[106]  N. Sonenberg,et al.  Constitutive mTOR activation in TSC mutants sensitizes cells to energy starvation and genomic damage via p53 , 2007, The EMBO journal.

[107]  Ralph J Deberardinis,et al.  Brick by brick: metabolism and tumor cell growth. , 2008, Current opinion in genetics & development.

[108]  S. Berger,et al.  LKB1 is recruited to the p21/WAF1 promoter by p53 to mediate transcriptional activation. , 2006, Cancer research.

[109]  M. Swaroop,et al.  Transcriptional Activation of the Human Glutathione Peroxidase Promoter by p53* , 1999, The Journal of Biological Chemistry.

[110]  Nobuyuki Tanaka,et al.  p53 regulates glucose metabolism through an IKK-NF-κB pathway and inhibits cell transformation , 2008, Nature Cell Biology.

[111]  E. Baehrecke,et al.  Growth Arrest and Autophagy Are Required for Salivary Gland Cell Degradation in Drosophila , 2007, Cell.

[112]  Guido Kroemer,et al.  Tumor cell metabolism: cancer's Achilles' heel. , 2008, Cancer cell.

[113]  T. Jacks,et al.  A subset of p53-deficient embryos exhibit exencephaly , 1995, Nature Genetics.

[114]  J. Stockman Prevention of the neurocristopathy Treacher Collins syndrome through inhibition of p53 function , 2009 .

[115]  Chi V. Dang,et al.  The interplay between MYC and HIF in cancer , 2008, Nature Reviews Cancer.

[116]  Ru Wei,et al.  The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth , 2008, Nature.

[117]  J. Varley Germline TP53 mutations and Li‐Fraumeni syndrome , 2003, Human mutation.

[118]  B. Viollet,et al.  Systemic treatment with the antidiabetic drug metformin selectively impairs p53-deficient tumor cell growth. , 2007, Cancer research.

[119]  P. Chumakov,et al.  The antioxidant function of the p53 tumor suppressor , 2005, Nature Medicine.

[120]  Laura A. Solt,et al.  The PP2A-Associated Protein α4 Is an Essential Inhibitor of Apoptosis , 2004, Science.

[121]  N. Hay,et al.  Is Akt the "Warburg kinase"?-Akt-energy metabolism interactions and oncogenesis. , 2009, Seminars in cancer biology.

[122]  Kevin M. Ryan,et al.  DRAM, a p53-Induced Modulator of Autophagy, Is Critical for Apoptosis , 2006, Cell.

[123]  Saroj P. Mathupala,et al.  Hexokinase II: Cancer's double-edged sword acting as both facilitator and gatekeeper of malignancy when bound to mitochondria , 2006, Oncogene.

[124]  S. Piccolo p53 Regulation Orchestrates the TGF-β Response , 2008, Cell.

[125]  M.-H. Lee,et al.  Roles of p53, Myc and HIF-1 in Regulating Glycolysis — the Seventh Hallmark of Cancer , 2008, Cellular and Molecular Life Sciences.

[126]  L. Montanaro,et al.  Nucleolus, ribosomes, and cancer. , 2008, The American journal of pathology.

[127]  J. D. Weber,et al.  The ARF/p53 pathway. , 2000, Current opinion in genetics & development.

[128]  Saroj P. Mathupala,et al.  Glucose Catabolism in Cancer Cells , 1997, The Journal of Biological Chemistry.

[129]  W. Gu,et al.  p53-Dependent and p53-independent activation of autophagy by ARF. , 2008, Cancer research.

[130]  K. Vousden,et al.  PUMA and Bax-induced Autophagy Contributes to Apoptosis , 2009, Cell Death and Differentiation.

[131]  E. Koonin,et al.  Regeneration of Peroxiredoxins by p53-Regulated Sestrins, Homologs of Bacterial AhpD , 2004, Science.

[132]  K. Kinzler,et al.  A model for p53-induced apoptosis , 1997, Nature.

[133]  Edward J Merino,et al.  A role for DNA-mediated charge transport in regulating p53: Oxidation of the DNA-bound protein from a distance , 2007, Proceedings of the National Academy of Sciences.

[134]  Russell G. Jones,et al.  AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. , 2005, Molecular cell.

[135]  Leah E. Mechanic,et al.  p53-Induced Up-Regulation of MnSOD and GPx but not Catalase Increases Oxidative Stress and Apoptosis , 2004, Cancer Research.

[136]  O. Bandmann,et al.  p53‐dependent neuronal cell death in a DJ‐1‐deficient zebrafish model of Parkinson's disease , 2006, Journal of neurochemistry.

[137]  Han You,et al.  Coordination and communication between the p53 and IGF-1-AKT-TOR signal transduction pathways. , 2006, Genes & development.

[138]  C. Culmsee,et al.  Molecular insights into mechanisms of the cell death program: role in the progression of neurodegenerative disorders. , 2006, Current Alzheimer research.

[139]  Karen H. Vousden,et al.  p53 in health and disease , 2007, Nature Reviews Molecular Cell Biology.

[140]  K. Schulze-Osthoff,et al.  The dark side of a tumor suppressor: anti-apoptotic p53 , 2008, Cell Death and Differentiation.