Interpolatory Subdivision Schemes

Interpolatory subdivision schemes are refinement rules, which refine data by inserting values corresponding to intermediate points, using linear combinations of neighbouring points. Here we consider only refinements of regular meshes, which in the univariate case (subdivision for curve generation) are uniformly distributed points on the real line, and in the bivariate case (subdivision for surface generation) are either square grids or regular triangulations.

[1]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[2]  C. Micchelli,et al.  Stationary Subdivision , 1991 .

[3]  N. Dyn,et al.  A butterfly subdivision scheme for surface interpolation with tension control , 1990, TOGS.

[4]  Malcolm A. Sabin,et al.  Eigenanalysis and Artifacts of Subdivision Curves and Surfaces , 2002, Tutorials on Multiresolution in Geometric Modelling.

[5]  Nira Dyn,et al.  Using parameters to increase smoothness of curves and surfaces generated by subdivision , 1990, Comput. Aided Geom. Des..

[6]  Joe D. Warren,et al.  A subdivision scheme for surfaces of revolution , 2001, Comput. Aided Geom. Des..

[7]  Leif Kobbelt,et al.  Interpolatory Subdivision on Open Quadrilateral Nets with Arbitrary Topology , 1996, Comput. Graph. Forum.

[8]  S. Dubuc Interpolation through an iterative scheme , 1986 .

[9]  Peter Schröder,et al.  Interpolating Subdivision for meshes with arbitrary topology , 1996, SIGGRAPH.

[10]  D. Levin,et al.  Interpolating Subdivision Schemes for the Generation of Curves and Surfaces , 1990 .

[11]  Nira Dyn,et al.  A 4-point interpolatory subdivision scheme for curve design , 1987, Comput. Aided Geom. Des..

[12]  D. Levin,et al.  Stationary and non-stationary binary subdivision schemes , 1992 .

[13]  Gilles Deslauriers,et al.  Symmetric iterative interpolation processes , 1989 .

[14]  I. Daubechies,et al.  Two-scale difference equations II. local regularity, infinite products of matrices and fractals , 1992 .