Detecting lithology with Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) multispectral thermal infrared “radiance-at-sensor” data

[1]  R. Lyon Analysis of rocks by spectral infrared emission (8 to 25 microns) , 1965 .

[2]  John W. Salisbury,et al.  Mid-Infrared Spectral Behavior of Igneous Rocks. , 1974 .

[3]  J. Soha,et al.  Middle infrared multispectral aircraft scanner data: analysis for geological applications. , 1980, Applied optics.

[4]  L. Rowan,et al.  Evaluation of multispectral middle infrared aircraft images for lithologic mapping in the East Tintic Mountains, Utah , 1980 .

[5]  B. Dupré,et al.  The Xigaze ophiolite (Tibet): a peculiar oceanic lithosphere , 1981, Nature.

[6]  A. Goetz,et al.  Mineralogic Information from a New Airborne Thermal Infrared Multispectral Scanner , 1983, Science.

[7]  Yoshiki Ninomiya,et al.  Quantitative estimation of SiO2 content in igneous rocks using thermal infrared spectra with a neural network approach , 1995, IEEE Trans. Geosci. Remote. Sens..

[8]  S. Hook Mapping Playa Evaporite Minerals and Associated Sediments in Death Valley, California, with , 1996 .

[9]  Hiroyuki Fujisada,et al.  Design and performance of ASTER instrument , 1995, Remote Sensing.

[10]  Simon J. Hook,et al.  The micro Fourier Transform Interferometer (μFTIR) : A new field spectrometer for acquisition of infrared data of natural surfaces , 1996 .

[11]  Yasushi Yamaguchi,et al.  Overview of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) , 1998, IEEE Trans. Geosci. Remote. Sens..

[12]  F. Bihong,et al.  Thermal Infrared Spectra and TIMS Imagery Features of Sedimentary Rocks in the Kalpin Uplift,Tarim Basin,China , 1998 .

[13]  Yoshiki Ninomiya,et al.  Potential Applicability of ASTER Thermal Infrared Multispectral Data on Estimation of SiO2 Content in Surface Rocks , 1999 .

[14]  Thomas Cudahy,et al.  Mapping surface mineralogy and scattering behavior using backscattered reflectance from a hyperspectral midinfrared airborne CO 2 laser system (MIRACO2LAS) , 1999, IEEE Trans. Geosci. Remote. Sens..

[15]  Yoshiki Ninomiya,et al.  Mapping quartz, carbonate minerals, and mafic-ultramafic rocks using remotely sensed multispectral thermal infrared ASTER data , 2002, SPIE Defense + Commercial Sensing.

[16]  Yoshiki Ninomiya,et al.  Quartz Index, Carbonate Index and SiO2 Content Index Defined for ASTER TIR Data , 2002 .

[17]  Yoshiki Ninomiya,et al.  Extracting Lithologic Information from Aster Multispectral Thermal Infrared Data in the Northeastern Pamirs , 2003 .

[18]  L. Rowan,et al.  Lithologic mapping in the Mountain Pass, California area using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data , 2003 .

[19]  Yoshiki Ninomiya,et al.  Rock type mapping with indices defined for multispectral thermal infrared ASTER data: case studies , 2003, SPIE Remote Sensing.

[20]  Yoshiki Ninomiya,et al.  Lithologic mapping with multispectral ASTER TIR and SWIR data , 2004, SPIE Remote Sensing.