High-efficiency stretchable light-emitting polymers from thermally activated delayed fluorescence

[1]  Yang Wang,et al.  High-brightness all-polymer stretchable LED with charge-trapping dilution , 2022, Nature.

[2]  Jinyi Lin,et al.  Intrinsically Stretchable and Stable Ultra‐Deep‐Blue Fluorene‐Based Polymer with a High Emission Efficiency of ≈90% for Polymer Light‐Emitting Devices with a CIEy = 0.06 , 2021, Advanced Functional Materials.

[3]  Megan K. O’Brien,et al.  Miniaturized wireless, skin-integrated sensor networks for quantifying full-body movement behaviors and vital signs in infants , 2021, Proceedings of the National Academy of Sciences.

[4]  Hyung Joon Shim,et al.  Highly conductive and elastic nanomembrane for skin electronics , 2021, Science.

[5]  J. B. Tok,et al.  Monolithic optical microlithography of high-density elastic circuits , 2021, Science.

[6]  Jin-Woo Park,et al.  Intrinsically stretchable organic light-emitting diodes , 2021, Science Advances.

[7]  David G. Mackanic,et al.  Artificial multimodal receptors based on ion relaxation dynamics , 2020, Science.

[8]  G. Cheng,et al.  Nanomesh pressure sensor for monitoring finger manipulation without sensory interference , 2020, Science.

[9]  Q. Pei,et al.  Large-area display textiles integrated with functional systems , 2020, Nature.

[10]  X. Jing,et al.  Through-Space Charge Transfer Polynorbornenes with Fixed and Controllable Spatial Alignment of Donor and Acceptor for High-Efficiency Blue Thermally Activated Delayed Fluorescence. , 2020, Angewandte Chemie.

[11]  S. Sastry,et al.  Predicting plasticity in disordered solids from structural indicators , 2020, Physical Review Materials.

[12]  John A. Rogers,et al.  Emerging Modalities and Implantable Technologies for Neuromodulation , 2020, Cell.

[13]  Robert F. Shepherd,et al.  A transparent, self-healing and high-κ dielectric for low-field-emission stretchable optoelectronics , 2019, Nature Materials.

[14]  Zhengjian Qi,et al.  Molecular engineering of thermally activated delayed fluorescence emitters with aggregation-induced emission via introducing intramolecular hydrogen-bonding interactions for efficient solution-processed non-doped OLEDs. , 2019, ACS applied materials & interfaces.

[15]  Lixiang Wang,et al.  Bridging small molecules to conjugated polymers: drive efficient thermally activated delayed fluorescence with a methyl-substituted phenylene linker. , 2019, Angewandte Chemie.

[16]  R. Haiges,et al.  Eliminating nonradiative decay in Cu(I) emitters: >99% quantum efficiency and microsecond lifetime , 2019, Science.

[17]  Q. Pei,et al.  Stretchable Organometal‐Halide‐Perovskite Quantum‐Dot Light‐Emitting Diodes , 2019, Advanced materials.

[18]  P. Guan,et al.  Local versus Global Stretched Mechanical Response in a Supercooled Liquid near the Glass Transition. , 2018, Physical review letters.

[19]  Bong Hoon Kim,et al.  A Wireless Closed Loop System for Optogenetic Peripheral Neuromodulation , 2018, Nature.

[20]  Franklin L. Lee,et al.  Effect of Nonconjugated Spacers on Mechanical Properties of Semiconducting Polymers for Stretchable Transistors , 2018, Advanced Functional Materials.

[21]  Francisco Molina-Lopez,et al.  An integrated self-healable electronic skin system fabricated via dynamic reconstruction of a nanostructured conducting network , 2018, Nature Nanotechnology.

[22]  J. Kido,et al.  Conjugated Polyelectrolyte Blend with Polyethyleneimine Ethoxylated for Thickness-Insensitive Electron Injection Layers in Organic Light-Emitting Devices. , 2018, ACS applied materials & interfaces.

[23]  Boris Murmann,et al.  Skin electronics from scalable fabrication of an intrinsically stretchable transistor array , 2018, Nature.

[24]  X. Jing,et al.  Blue Thermally Activated Delayed Fluorescence Polymers with Nonconjugated Backbone and Through-Space Charge Transfer Effect. , 2017, Journal of the American Chemical Society.

[25]  Jingjing Guo,et al.  Highly Efficient Nondoped OLEDs with Negligible Efficiency Roll-Off Fabricated from Aggregation-Induced Delayed Fluorescence Luminogens. , 2017, Angewandte Chemie.

[26]  S. Yoo,et al.  Universal high work function flexible anode for simplified ITO-free organic and perovskite light-emitting diodes with ultra-high efficiency , 2017 .

[27]  R. H. Kim,et al.  Organic light emitting board for dynamic interactive display , 2017, Nature Communications.

[28]  Boris Murmann,et al.  Highly stretchable polymer semiconductor films through the nanoconfinement effect , 2017, Science.

[29]  Q. Pei,et al.  Elastomeric Light Emitting Polymer Enhanced by Interpenetrating Networks. , 2016, ACS applied materials & interfaces.

[30]  Xiaodan Gu,et al.  Intrinsically stretchable and healable semiconducting polymer for organic transistors , 2016, Nature.

[31]  Jasmine P. H. Rivett,et al.  High-performance light-emitting diodes based on carbene-metal-amides , 2016, Science.

[32]  Sanlin S. Robinson,et al.  Highly stretchable electroluminescent skin for optical signaling and tactile sensing , 2016, Science.

[33]  A. Nikolaenko,et al.  Thermally Activated Delayed Fluorescence in Polymers: A New Route toward Highly Efficient Solution Processable OLEDs , 2015, Advanced materials.

[34]  Berk Hess,et al.  GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers , 2015 .

[35]  Zhenan Bao,et al.  Highly Stretchable Transistors Using a Microcracked Organic Semiconductor , 2014, Advanced materials.

[36]  Q. Pei,et al.  Silver nanowire percolation network soldered with graphene oxide at room temperature and its application for fully stretchable polymer light-emitting diodes. , 2014, ACS nano.

[37]  Zhibin Yu,et al.  Elastomeric polymer light-emitting devices and displays , 2013, Nature Photonics.

[38]  Takao Someya,et al.  Ultrathin, highly flexible and stretchable PLEDs , 2013, Nature Photonics.

[39]  C. Adachi,et al.  Highly efficient organic light-emitting diodes by delayed fluorescence , 2013 .

[40]  Marcus D. Hanwell,et al.  Avogadro: an advanced semantic chemical editor, visualization, and analysis platform , 2012, Journal of Cheminformatics.

[41]  Qibing Pei,et al.  Intrinsically Stretchable Polymer Light‐Emitting Devices Using Carbon Nanotube‐Polymer Composite Electrodes , 2011, Advanced materials.

[42]  Yonggang Huang,et al.  Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics. , 2010, Nature materials.

[43]  José Mario Martínez,et al.  PACKMOL: A package for building initial configurations for molecular dynamics simulations , 2009, J. Comput. Chem..

[44]  T. Someya,et al.  Stretchable active-matrix organic light-emitting diode display using printable elastic conductors. , 2009, Nature materials.

[45]  Robert A. Riggleman,et al.  Molecular plasticity of polymeric glasses in the elastic regime. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[46]  Juan J. de Pablo,et al.  Modeling Deformation and Flow of Disordered Materials , 2007 .

[47]  René A. J. Janssen,et al.  Tough, Semiconducting Polyethylene‐poly(3‐hexylthiophene) Diblock Copolymers , 2007 .

[48]  Juan J de Pablo,et al.  Mechanical heterogeneities in model polymer glasses at small length scales. , 2004, Physical review letters.

[49]  Russell J. Holmes,et al.  Excitonic singlet-triplet ratios in molecular and polymeric organic materials , 2003 .

[50]  José Mario Martínez,et al.  Packing optimization for automated generation of complex system's initial configurations for molecular dynamics and docking , 2003, J. Comput. Chem..

[51]  J. Burroughes,et al.  High-efficiency organic light-emitting diodes , 2002 .

[52]  A. S. Dhoot,et al.  Spin-dependent exciton formation in π-conjugated compounds , 2001, Nature.

[53]  S. Forrest,et al.  Highly efficient phosphorescent emission from organic electroluminescent devices , 1998, Nature.

[54]  Lewis J. Rothberg,et al.  Status of and prospects for organic electroluminescence , 1996 .

[55]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[56]  Nadine Gottschalk,et al.  Fundamentals Of Photonics , 2016 .

[57]  Stephen R Forrest,et al.  Deep blue phosphorescent organic light-emitting diodes with very high brightness and efficiency. , 2016, Nature materials.

[58]  A. Stukowski Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool , 2009 .

[59]  T. Tsutsui,et al.  Organic Multilayer-Dye Electroluminescent Diodes — is There any Difference with Polymer LED? , 1993 .