Robust methods for fluid-structure interaction with stabilised finite elements

Various multifield problems and among them fluid-structure interaction applications arise in nearly all fields of engineering. The present work contributes to the development of a stable and robust approach for the numerical simulation of fluid-structure interaction problems. In particular two-dimensional and three-dimensional elastic structues interacting with incompressible flow are considered. The structural field is governed by the nonlinear elastodynamic equations while the dynamics of the fluid field are described by the incompressible Navier-Stokes equations. Both fields are discretised by finite elements in space and finite difference methods in time. An iteratively staggered partitioned coupling procedure with relaxation is applied to obtain the overall coupled solution. This work focuses on methodological aspects and contributes to a deeper understanding of the theoretical foundations of the approach. This is necessary to ensure that the formulation is stable and offers reliable results for a wide range of parameters. In particular the flow solver formulated in an arbitrary Lagrangean Eulerian approach is considered. In addition to the classical conservation laws of mass, linear momentum and energy geometric conservation has to be considered. This is a consequence of the formulation of the flow equations with respect to a moving frame of reference. The relationship of these conservation laws and the stability of the numerical scheme is investigated and stability limits in terms of maximal time step sizes for different formulations are established. It is further shown how an unconditionally stable ALE formulation has to be constructed. Another key issue is the stabilised finite element method employed on the fluid domain. The derivation of the method from a virtual bubble approach is revisited while special attention is turned to the fact that the domain is moving. A version of the stabilisation is derived which is nearly unaffected by the motion of the frame of reference. Further the sensitivity of the stabilised formulation with respect to critical parameters such as very small time steps, steep gradients and distorted meshes is assessed. At least for higher order elements where full consistency of the formulation is assured very accurate results can be obtained on highly distorted meshes. As another main issue the coupling of fluid and structure within a partitioned scheme is considered. A first concern in this context is the exchange of proper coupling data at the interface which is crucial for the consistency of the overall scheme. Subsequently the so-called artificial added mass effect is analysed. This effect is responsible for an inherent instability of sequentially staggered coupling schemes applied to the coupling of lightweight structures and incompressible flow. It is essentially the influence of the incompressibilty which excludes the successful use of simple staggered schemes. The analysis derived in the course of this work reveals why the artificial added mass instability depends upon the mass ratio but further on the specific time discretisation used on the fluid and structural field. In particular it is shown why more accurate temporal discretisation results in an earlier onset of the instability. While the theoretical considerations are accompanied by small numerical examples highlighting particular aspects some larger applications of the method are finally presented. In nahezu allen Bereichen des Ingenieurwesens treten Mehrfeldprobleme auf, zu denen auch Fluid-Struktur-Interaktionen (FSI) zu zahlen sind. Diese Arbeit tragt zur Entwicklung eines stabilen und robusten numerischen Verfahrens zur Losung solcher FSI-Probleme bei. Hier werden speziell zwei- und dreidimensionale Strukturen betrachtet, die in Wechselwirkung mit inkompressiblen Flussigkeiten treten. Dabei ist das Strukturverhalten durch die nichtlinearen Gleichungen der Elastodynamik bestimmt. Die Dynamik des Fluids wird durch die inkompressiblen Navier-Stokes-Gleichungen beschrieben. Beide Felder werden mit Hilfe finiter Elemente im Raum und mittels Differenzenverfahren in der Zeit diskretisiert. Um das gekoppelte Problem zu losen, kommt ein iterativ gestaffeltes partitioniertes Kopplungsverfahren mit Relaxation zum Einsatz. Der Schwerpunkt dieser Arbeit liegt auf methodischen Aspekten. Insbesondere sollen die theoretischen Grundlagen des numerischen Verfahrens verbessert werden. Dabei ist das Ziel sicherzustellen, das das Verfahren stabil lauft und fur einen weiten Parameterbereich Ergebnisse von verlaslicher Genauigkeit liefert. Besondere Aufmerksamkeit gilt dem Fluidloser, der in "Arbitrary Lagrangean Eulerian" (ALE) Betrachtungsweise formuliert ist. Das Verhalten des Fluids wird also in Bezug auf ein bewegtes Koordinatensystem beschrieben. Daher gilt es hier, neben den klassischen Erhaltungssatzen fur Masse, Impuls und Energie auch die geometrische Erhalung zu beachten. Der Zusammenhang zwischen den verschiedenen Erhaltungssatzen und der Stabilitat des numerischen Verfahrens wird untersucht und es konnen Stabilitatsgrenzen in Form von maximalen Zeitschrittweiten fur verschiedene Verfahren angegeben werden. Weiterhin kann gezeigt werden, wie ein unbedingt stabiles ALE Verfahren formuliert werden mus . Ein nachstes Schwerpunktthema ist das stabilisierte Finite-Element-Verfahren auf dem bewegten Gebiet. Es wird eine Version des Stabilisierungsverfahrens hergeleitet, deren Stabilitat von der Netzbewegung nahezu unberuhrt bleibt. Weitere Untersuchungen betreffen die Empfindlichkeit des Verfahrens in Bezug auf kritische Parameter wie sehr kleine Zeitschritte, steile Gradienten oder auch stark verzerrte Netze. Fur Elemente hoherer Ordnung ist das stabilisierte Verfahren vollstandig konsistent. Es wird gezeigt, das mit solchen Elementen auch auf deutlich verzerrten Nezten sehr genaue Ergebnisse erzielt werden konnen. Besonderes Augenmerk wird auch auf die Fluid-Struktur-Kopplung im Rahmen partitionierter Verfahren gelegt. In diesem Zusammenhang betrifft eine erste Frage den Austausch genauer und methodisch konsistenter Kopplungsinformation an der Grenzflache zwischen Fluid und Struktur. Weiterhin wird der sogenannte "artificial added mass effect" analysiert. Dieser Effekt bezeichnet die inherente Instabilitat, die bei sequentiell gestaffelten Verfahren auftritt, wenn leichte Strukturen mit inkompressiblen Fluiden gekoppelt werden. Dabei ist letztendlich die Inkompressibilitat dafur verantwortlich, das einfache sequentiell gestaffelte Verfahren nicht erfolgreich verwendet werden konnen. Die mathematische Analyse, die im Rahmen dieser Arbeit vorgenommen wird, zeigt, warum die Instabilitat nicht nur vom Massenverhaltnis der beteiligten Kontinua, sondern auch von der Zeitdiskretisierung der Felder abhangt. Es wird deutlich, warum genauere zeitliche Diskretisierungsansatze ein fruheres Eintreten der Instabilitat zur Folge haben. Die theoretischen Ergebnisse werden durch begleitende kleine Beispielrechnungen veranschaulicht. Einige grosere Anwendungen des Verfahrens werden am Schlus der Arbeit prasentiert.

[1]  Charbel Farhat,et al.  Geometric conservation laws for flow problems with moving boundaries and deformable meshes, and their impact on aeroelastic computations , 1996 .

[2]  Pavel B. Bochev,et al.  On inf-sup stabilized finite element methods for transient problems , 2004 .

[3]  C. Farhat,et al.  Torsional springs for two-dimensional dynamic unstructured fluid meshes , 1998 .

[4]  W. Prager,et al.  Einführung in die Kontinuumsmechanik , 1961 .

[5]  Kenneth E. Jansen,et al.  A stabilized finite element method for the incompressible Navier–Stokes equations using a hierarchical basis , 2001 .

[6]  Charbel Farhat,et al.  On the significance of the geometric conservation law for flow computations on moving meshes , 2000 .

[7]  Andrea S. Hund Hierarchische Mehrskalenmodellierung des Versagens von Werkstoffen mit Mikrostruktur , 2007 .

[8]  M. Heil An efficient solver for the fully-coupled solution of large-displacement fluid-structure interaction problems , 2004 .

[9]  A. Quarteroni,et al.  Numerical Approximation of Partial Differential Equations , 2008 .

[10]  Alessandro Russo,et al.  Streamline-upwind Petrov/Galerkin method (SUPG) vs residual-free bubbles (RFB) , 2006 .

[11]  S. Giuliani,et al.  Lagrangian and Eulerian Finite Element Techniques for Transient Fluid-Structure Interaction Problems , 1977 .

[12]  T. Hughes,et al.  Stabilized finite element methods. I: Application to the advective-diffusive model , 1992 .

[13]  Ernst Rank,et al.  Fluid-structure interaction in civil engineering , 2003 .

[14]  A. Chorin Numerical solution of the Navier-Stokes equations , 1968 .

[15]  Fabio Nobile,et al.  Added-mass effect in the design of partitioned algorithms for fluid-structure problems , 2005 .

[16]  Mohamed Hamdy Doweidar,et al.  Proper intrinsic scales for a-posteriori multiscale error estimation , 2006 .

[17]  Klaus-Jürgen Bathe,et al.  A flow-condition-based interpolation finite element procedure for incompressible fluid flows , 2002 .

[18]  Ramon Codina,et al.  Space and Time Error Estimates for a First Order, Pressure Stabilized Finite Element Method for the Incompressible Navier–Stokes Equations , 2001 .

[19]  Tayfun E. Tezduyar,et al.  Solution techniques for the fully discretized equations in computation of fluid–structure interactions with the space–time formulations , 2006 .

[20]  Ekkehard Ramm,et al.  A three-level finite element method for the instationary incompressible Navier?Stokes equations , 2004 .

[21]  Volker Gravemeier,et al.  The variational multiscale method for laminar and turbulent incompressible flow , 2003 .

[22]  M. Bischoff Theorie und Numerik einer dreidimensionalen Schalenformulierung , 1999 .

[23]  D. Dinkler,et al.  A monolithic approach to fluid–structure interaction using space–time finite elements , 2004 .

[24]  R. Temam,et al.  Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .

[25]  Ekkehard Ramm,et al.  Stabilized finite element formulation for incompressible flow on distorted meshes , 2009 .

[26]  Toshio Kobayashi,et al.  Computer modeling of cardiovascular fluid-structure interactions with the deforming-spatial-domain/stabilized space-time formulation , 2006 .

[27]  Tayfun E. Tezduyar,et al.  Finite element stabilization parameters computed from element matrices and vectors , 2000 .

[28]  Ekkehard Ramm,et al.  Large eddy simulation of turbulent incompressible flows by a three‐level finite element method , 2005 .

[29]  Isaac Harari,et al.  Semidiscrete formulations for transient transport at small time steps , 2007 .

[30]  Bo-nan Jiang Incompressible Viscous Flows , 1998 .

[31]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[32]  Charbel Farhat,et al.  Provably second-order time-accurate loosely-coupled solution algorithms for transient nonlinear computational aeroelasticity , 2006 .

[33]  Michael Griebel,et al.  Flow simulation on moving boundary-fitted grids and application to fluid-structure interaction problems , 2006 .

[34]  Arif Masud,et al.  A Multiscale/stabilized Formulation of the Incompressible Navier–Stokes Equations for Moving Boundary Flows and Fluid–structure Interaction , 2006 .

[35]  Thomas J. R. Hughes,et al.  Finite element modeling of blood flow in arteries , 1998 .

[36]  Michael Gee Effiziente Lösungsstrategien in der nichtlinearen Schalenmechanik , 2004 .

[37]  Frédéric Valentin,et al.  An unusual stabilized finite element method for a generalized Stokes problem , 2002, Numerische Mathematik.

[38]  Richard Benney,et al.  Applications in Airdrop Systems : Fluid-Structure Interaction Modeling , 2002 .

[39]  Peter Wriggers,et al.  Nichtlineare Finite-Element-Methoden , 2001 .

[40]  Santiago Badia,et al.  Analysis of a Stabilized Finite Element Approximation of the Transient Convection-Diffusion Equation Using an ALE Framework , 2006, SIAM J. Numer. Anal..

[41]  Arif Masud,et al.  A Stabilized Mixed Finite Element Method for Nearly Incompressible Elasticity , 2005 .

[42]  T. Tezduyar Computation of moving boundaries and interfaces and stabilization parameters , 2003 .

[43]  T. Hughes,et al.  The Galerkin/least-squares method for advective-diffusive equations , 1988 .

[44]  O. C. Zienkiewicz,et al.  The Finite Element Method for Fluid Dynamics , 2005 .

[45]  Pavel B. Bochev,et al.  An Absolutely Stable Pressure-Poisson Stabilized Finite Element Method for the Stokes Equations , 2004, SIAM J. Numer. Anal..

[46]  E. Ramm,et al.  Models and finite elements for thin-walled structures , 2004 .

[47]  Erich Rothe,et al.  Zweidimensionale parabolische Randwertaufgaben als Grenzfall eindimensionaler Randwertaufgaben , 1930 .

[48]  Thomas J. R. Hughes,et al.  Conservation properties for the Galerkin and stabilised forms of the advection–diffusion and incompressible Navier–Stokes equations , 2005 .

[49]  J. Halleux,et al.  An arbitrary lagrangian-eulerian finite element method for transient dynamic fluid-structure interactions , 1982 .

[50]  Jean E. Roberts,et al.  Mixed and hybrid finite element methods , 1987 .

[51]  Charbel Farhat,et al.  Design of Efficient Partitioned Procedures for the Transient Solution of Aeroelastic Problems , 2000 .

[52]  E. Ramm,et al.  Artificial added mass instabilities in sequential staggered coupling of nonlinear structures and incompressible viscous flows , 2007 .

[53]  L. E. Malvern Introduction to the mechanics of a continuous medium , 1969 .

[54]  A. Masud,et al.  A variational multiscale method for inelasticity: Application to superelasticity in shape memory alloys , 2006 .

[55]  C. Farhat,et al.  Partitioned procedures for the transient solution of coupled aroelastic problems Part I: Model problem, theory and two-dimensional application , 1995 .

[56]  Volker John,et al.  On the efficiency of linearization schemes and coupled multigrid methods in the simulation of a 3D flow around a cylinder , 2006 .

[57]  T. Hughes,et al.  Two classes of mixed finite element methods , 1988 .

[58]  Serge Piperno,et al.  Explicit/implicit fluid/structure staggered procedures with a structural predictor and fluid subcycling for 2D inviscid aeroelastic simulations , 1997 .

[59]  Franz G. Rammerstorfer,et al.  Storage Tanks Under Earthquake Loading , 1990 .

[60]  T. Hughes,et al.  A tutorial in elementary finite element error analysis: A systematic presentation of a priori and a posteriori error estimates , 1998 .

[61]  T. Hughes,et al.  The variational multiscale method—a paradigm for computational mechanics , 1998 .

[62]  Max Gunzburger,et al.  Finite Element Methods for Viscous Incompressible Flows: A Guide to Theory, Practice, and Algorithms , 1989 .

[63]  Eugenio Oñate,et al.  Finite calculus formulations for finite element analysis of incompressible flows. Eulerian, ALE and Lagrangian approaches , 2006 .

[64]  T. Hughes,et al.  Large Eddy Simulation and the variational multiscale method , 2000 .

[65]  T. Tezduyar,et al.  A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time procedure. I: The concept and the preliminary numerical tests , 1992 .

[66]  Z. Warsi Fluid dynamics: theoretical and computational approaches , 1993 .

[67]  Rolf Rannacher,et al.  A posteriori error estimation in least-squares stabilized finite element schemes , 1998 .

[68]  P. Thomas,et al.  Geometric Conservation Law and Its Application to Flow Computations on Moving Grids , 1979 .

[69]  Rainald Löhner,et al.  Improved ALE mesh velocities for moving bodies , 1996 .

[70]  S. Mittal,et al.  Computation of unsteady incompressible flows with the stabilized finite element methods: Space-time formulations, iterative strategies and massively parallel implementations , 1992 .

[71]  R. Codina Stabilization of incompressibility and convection through orthogonal sub-scales in finite element methods , 2000 .

[72]  Pavel B. Bochev,et al.  On stabilized finite element methods for the Stokes problem in the small time step limit , 2007 .

[73]  Mutsuto Kawahara,et al.  Finite element analysis of density flow using the velocity correction method , 1985 .

[74]  Tayfun E. Tezduyar,et al.  Space-time finite element techniques for computation of fluid-structure interactions , 2005 .

[75]  Charbel Farhat,et al.  Second-order time-accurate and geometrically conservative implicit schemes for flow computations on unstructured dynamic meshes , 1999 .

[76]  Rainald Loehner,et al.  Fluid-structure-thermal interaction using a loose coupling algorithm and adaptive unstructured grids , 1998 .

[77]  Tayfun E. Tezduyar,et al.  Finite Element Methods for Fluid Dynamics with Moving Boundaries and Interfaces , 2004 .

[78]  Ernst Hairer,et al.  Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .

[79]  E. Ramm,et al.  Shell theory versus degeneration—a comparison in large rotation finite element analysis , 1992 .

[80]  R. D. Wood,et al.  Nonlinear Continuum Mechanics for Finite Element Analysis , 1997 .

[81]  S. Mittal,et al.  Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements , 1992 .

[82]  O. C. Zienkiewicz,et al.  The background of error estimation and adaptivity in finite element computations , 2006 .

[83]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuscka-Brezzi condition: A stable Petrov-Galerkin formulation of , 1986 .

[84]  R. Codina,et al.  A finite element formulation for the Stokes problem allowing equal velocity-pressure interpolation , 1997 .

[85]  Charbel Farhat,et al.  The discrete geometric conservation law and the nonlinear stability of ALE schemes for the solution of flow problems on moving grids , 2001 .

[86]  Fabio Nobile,et al.  A Stability Analysis for the Arbitrary Lagrangian Eulerian Formulation with Finite Elements , 1999 .

[87]  T. Hughes Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods , 1995 .

[88]  Isaac Harari,et al.  Stability of semidiscrete formulations for parabolic problems at small time steps , 2004 .

[89]  W. Wall,et al.  A Solution for the Incompressibility Dilemma in Partitioned Fluid–Structure Interaction with Pure Dirichlet Fluid Domains , 2006 .

[90]  T. Hughes,et al.  A theoretical framework for Petrov-Galerkin methods with discontinuous weighting functions: application to the streamline-upwind procedure. , 1982 .

[91]  Thomas J. R. Hughes,et al.  Large eddy simulation of turbulent channel flows by the variational multiscale method , 2001 .

[92]  O. C. Zienkiewicz,et al.  The Finite Element Method for Solid and Structural Mechanics , 2013 .

[93]  R. Codina Comparison of some finite element methods for solving the diffusion-convection-reaction equation , 1998 .

[94]  Pavel B. Bochev,et al.  A Taxonomy of Consistently Stabilized Finite Element Methods for the Stokes Problem , 2004, SIAM J. Sci. Comput..

[95]  Arif Masud,et al.  Effects of Mesh Motion on the Stability and Convergence of ALE Based Formulations for Moving Boundary Flows , 2006 .

[96]  Thomas J. R. Hughes,et al.  What are C and h ?: inequalities for the analysis and design of finite element methods , 1992 .

[97]  D. Silvester,et al.  Stabilised vs. stable mixed methods for incompressible flow , 1998 .

[98]  Rainer Helmig,et al.  Multifield problems in solid and fluid mechanics , 2006 .

[99]  Charbel Farhat,et al.  Design and analysis of robust ALE time-integrators for the solution of unsteady flow problems on moving grids , 2004 .

[100]  Ralf Massjung,et al.  Discrete conservation and coupling strategies in nonlinear aeroelasticity , 2006 .

[101]  Eugenio Oñate,et al.  Derivation of stabilized equations for numerical solution of advective-diffusive transport and fluid flow problems , 1998 .

[102]  O. C. Zienkiewicz,et al.  CBS versus GLS stabilization of the incompressible Navier–Stokes equations and the role of the time step as stabilization parameter , 2001 .

[103]  R. Codina A stabilized finite element method for generalized stationary incompressible flows , 2001 .

[104]  J. Hyvärinen,et al.  An Arbitrary Lagrangian-Eulerian finite element method , 1998 .

[105]  Alexandre J. Chorin,et al.  On the Convergence of Discrete Approximations to the Navier-Stokes Equations , 1969 .

[106]  Charbel Farhat,et al.  Design and analysis of ALE schemes with provable second-order time-accuracy for inviscid and viscous flow simulations , 2003 .

[107]  Ramon Codina,et al.  Approximation of the incompressible Navier-Stokes equations using orthogonal subscale stabilization and pressure segregation on anisotropic finite element meshes , 2004 .

[108]  Daniele Boffi,et al.  Stability and geometric conservation laws for ALE formulations , 2004 .

[109]  Ekkehard Ramm,et al.  On the geometric conservation law in transient flow calculations on deforming domains , 2006 .

[110]  Erik Burman,et al.  Stabilized finite element methods for the generalized Oseen problem , 2007 .

[111]  Jintai Chung,et al.  A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method , 1993 .

[112]  F. Blom Considerations on the spring analogy , 2000 .

[113]  O. Pironneau Finite Element Methods for Fluids , 1990 .

[114]  Wolfgang A. Wall Fluid-Struktur-Interaktion mit stabilisierten Finiten Elementen , 1999 .

[115]  Dieter Dinkler,et al.  Fluid-structure coupling within a monolithic model involving free surface flows , 2005 .

[116]  Clark R. Dohrmann,et al.  Stabilization of Low-order Mixed Finite Elements for the Stokes Equations , 2004, SIAM J. Numer. Anal..

[117]  L. Franca,et al.  On an Improved Unusual Stabilized Finite Element Method for theAdvective-Reactive-Diffusive Equation , 1999 .

[118]  Charbel Farhat,et al.  Unusual Stabilized Finite Element Methods and Residual-Free-Bubbles , 1996 .

[119]  Kenneth E. Jansen,et al.  A better consistency for low-order stabilized finite element methods , 1999 .

[120]  Thomas J. R. Hughes,et al.  Multiscale and Stabilized Methods , 2007 .

[121]  Björn Hübner Simultane Analyse von Bauwerk-Wind-Wechselwirkungen , 2003 .

[122]  Jim Douglas,et al.  An absolutely stabilized finite element method for the stokes problem , 1989 .

[123]  E. Ramm,et al.  On the physical significance of higher order kinematic and static variables in a three-dimensional shell formulation , 2000 .

[124]  C. Farhat,et al.  Bubble Functions Prompt Unusual Stabilized Finite Element Methods , 1994 .

[125]  Haruhiko Kohno,et al.  Insight into the flow‐condition‐based interpolation finite element approach: solution of steady‐state advection–diffusion problems , 2005 .

[126]  Allan Larsen,et al.  Advances in aeroelastic analyses of suspension and cable-stayed bridges , 1998 .

[127]  Thomas J. R. Hughes,et al.  Recent progress in the development and understanding of SUPG methods with special reference to the compressible Euler and Navier-Stokes equations†‡ , 1987 .

[128]  Charbel Farhat,et al.  A three-dimensional torsional spring analogy method for unstructured dynamic meshes , 2002 .

[129]  Sanjay Mittal,et al.  On the performance of high aspect ratio elements for incompressible flows , 2000 .

[130]  Tayfun E. Tezduyar,et al.  Stabilization Parameters in SUPG and PSPG Formulations , 2003 .

[131]  Wolfgang A. Wall,et al.  Parallel multilevel solution of nonlinear shell structures , 2005 .

[132]  Susanne C. Brenner,et al.  Finite Element Methods , 2000 .

[133]  R. Codina,et al.  Time dependent subscales in the stabilized finite element approximation of incompressible flow problems , 2007 .

[134]  P. Tallec,et al.  Fluid structure interaction with large structural displacements , 2001 .

[135]  Wulf G. Dettmer,et al.  An analysis of the time integration algorithms for the finite element solutions of incompressible Navier-Stokes equations based on a stabilised formulation , 2003 .

[136]  Charbel Farhat,et al.  CFD‐Based Nonlinear Computational Aeroelasticity , 2004 .

[137]  H. Matthies,et al.  Partitioned Strong Coupling Algorithms for Fluid-Structure-Interaction , 2003 .

[138]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[139]  Pavel B. Bochev,et al.  Stability of the SUPG finite element method for transient advection-diffusion problems , 2004 .

[140]  Miguel A. Fernández,et al.  A projection semi‐implicit scheme for the coupling of an elastic structure with an incompressible fluid , 2007 .

[141]  Arif Masud,et al.  Revisiting stabilized finite element methods for the advective–diffusive equation , 2006 .

[142]  Mohamed Hamdy Doweidar,et al.  Fourier analysis of semi-discrete and space–time stabilized methods for the advective–diffusive–reactive equation: I. SUPG , 2005 .

[143]  Carlos A. Felippa,et al.  Staggered transient analysis procedures for coupled mechanical systems: Formulation , 1980 .

[144]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[145]  T. Hughes,et al.  MULTI-DIMENSIONAL UPWIND SCHEME WITH NO CROSSWIND DIFFUSION. , 1979 .

[146]  Hermann G. Matthies,et al.  Algorithms for strong coupling procedures , 2006 .

[147]  K. Bathe,et al.  On the flow-condition-based interpolation approach for incompressible fluids , 2005 .

[148]  Charbel Farhat,et al.  Partitioned procedures for the transient solution of coupled aeroelastic problems , 2001 .

[149]  Franco Brezzi,et al.  Virtual bubbles and Galerkin-least-squares type methods (Ga.L.S.) , 1993 .

[150]  Alessandro Russo,et al.  CHOOSING BUBBLES FOR ADVECTION-DIFFUSION PROBLEMS , 1994 .

[151]  C. W. Hirt,et al.  An Arbitrary Lagrangian-Eulerian Computing Method for All Flow Speeds , 1997 .

[152]  J. Szmelter Incompressible flow and the finite element method , 2001 .

[153]  S. Dey,et al.  Hierarchical basis for stabilized finite element methods for compressible flows , 2003 .

[154]  Ramon Codina,et al.  Analysis of a pressure-stabilized finite element approximation of the stationary Navier-Stokes equations , 2000, Numerische Mathematik.

[155]  Ekkehard Ramm,et al.  Generalized Energy–Momentum Method for non-linear adaptive shell dynamics , 1999 .

[156]  F. Brezzi,et al.  A relationship between stabilized finite element methods and the Galerkin method with bubble functions , 1992 .

[157]  P. Moin,et al.  Application of a Fractional-Step Method to Incompressible Navier-Stokes Equations , 1984 .

[158]  Volker John,et al.  Time‐dependent flow across a step: the slip with friction boundary condition , 2006 .

[159]  Tayfun E. Tezduyar,et al.  Calculation of the advective limit of the SUPG stabilization parameter for linear and higher-order elements , 2004 .

[160]  T. Hughes,et al.  Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .

[161]  J. M. Watt Numerical Initial Value Problems in Ordinary Differential Equations , 1972 .

[162]  W. Gibbs,et al.  Finite element methods , 2017, Graduate Studies in Mathematics.

[163]  John N. Shadid,et al.  Official Aztec user''s guide: version 2.1 , 1999 .

[164]  L. Formaggia,et al.  Stability analysis of second-order time accurate schemes for ALE-FEM , 2004 .

[165]  Cv Clemens Verhoosel,et al.  Non-Linear Finite Element Analysis of Solids and Structures , 1991 .

[166]  Manolis Papadrakakis,et al.  The ortho-semi-torsional (OST) spring analogy method for 3D mesh moving boundary problems , 2007 .

[167]  Thomas J. R. Hughes,et al.  The Continuous Galerkin Method Is Locally Conservative , 2000 .

[168]  Guillermo Hauke,et al.  A simple subgrid scale stabilized method for the advection–diffusion-reaction equation , 2002 .

[169]  O. C. Zienkiewicz,et al.  The Finite Element Method: Its Basis and Fundamentals , 2005 .

[170]  Rolf Rannacher,et al.  ARTIFICIAL BOUNDARIES AND FLUX AND PRESSURE CONDITIONS FOR THE INCOMPRESSIBLE NAVIER–STOKES EQUATIONS , 1996 .

[171]  Christian Großmann,et al.  Numerik partieller Differentialgleichungen , 1994 .

[172]  Thomas J. R. Hughes,et al.  A space-time Galerkin/least-squares finite element formulation of the Navier-Stokes equations for moving domain problems , 1997 .

[173]  C. Dohrmann,et al.  A stabilized finite element method for the Stokes problem based on polynomial pressure projections , 2004 .

[174]  D. Dinkler,et al.  Fluid-structure coupling within a monolithic model involving free surface flows , 2005 .

[175]  J. Oden Finite Elements of Nonlinear Continua , 1971 .

[176]  C. W. Gear,et al.  Numerical initial value problem~ in ordinary differential eqttations , 1971 .

[177]  E. Ramm,et al.  Three‐dimensional extension of non‐linear shell formulation based on the enhanced assumed strain concept , 1994 .

[178]  Ramon Codina,et al.  A nodal-based implementation of a stabilized finite element method for incompressible flow problems , 2000 .

[179]  H. Saunders,et al.  Finite element procedures in engineering analysis , 1982 .

[180]  Daniel Pinyen Mok Partitionierte Lösungsansätze in der Strukturdynamik und der Fluid-Struktur-Interaktion , 2001 .

[181]  Roger Ohayon,et al.  Fluid‐Structure Interaction Problems , 2004 .

[182]  R. Codina Stabilized finite element approximation of transient incompressible flows using orthogonal subscales , 2002 .

[183]  Dietrich Braess,et al.  Finite Elemente - Theorie, schnelle Löser und Anwendungen in der Elastizitätstheorie , 1992 .

[184]  J. P. Pontaza,et al.  A FLOW-CONDITION-BASED INTERPOLATION MIXED FINITE ELEMENT PROCEDURE FOR HIGHER REYNOLDS NUMBER FLUID FLOWS , 2002 .

[185]  R. Codina Analysis of a stabilized finite element approximation of the Oseen equations using orthogonal subscales , 2008 .

[186]  Pavel B. Bochev,et al.  ON STABILIZED FINITE ELEMENT METHODS FOR TRANSIENT PROBLEMS WITH VARYING TIME SCALES , 2004 .

[187]  Thomas J. R. Hughes,et al.  Stabilization Techniques and Subgrid Scales Capturing , 1996 .

[188]  Siegfried Wagner,et al.  Wind loads on lightweight structures: Numerical simulation and wind tunnel tests , 2005 .

[189]  Eugenio Oñate,et al.  Stabilized formulation for the advection-diffusion-absorption equation using finite calculus and linear finite elements , 2006 .

[190]  R. Aris Vectors, Tensors and the Basic Equations of Fluid Mechanics , 1962 .

[191]  Gabriel Bugeda,et al.  A simple method for automatic update of finite element meshes , 2000 .

[192]  Ramon Codina,et al.  Stabilized finite element method for the transient Navier–Stokes equations based on a pressure gradient projection , 2000 .

[193]  William Layton,et al.  APPROXIMATION OF THE LARGER EDDIES IN FLUID MOTIONS II: A MODEL FOR SPACE-FILTERED FLOW , 2000 .

[194]  Rolf Stenberg,et al.  Error analysis of some nite element methods for the Stokes problem , 1990 .

[195]  D. Peric,et al.  A computational framework for fluid–structure interaction: Finite element formulation and applications , 2006 .

[196]  Olivier Pironneau,et al.  Pressure boundary condition for the time‐dependent incompressible Navier–Stokes equations , 2006 .

[197]  A. Huerta,et al.  Finite Element Methods for Flow Problems , 2003 .