Configurations of Non-crossing Rays and Related Problems

Let S be a set of n points in the plane and let R be a set of n pairwise non-crossing rays, each with an apex at a different point of S. Two sets of non-crossing rays $$R_1$$R1 and $$R_2$$R2 are considered to be different if the cyclic permutations they induce at infinity are different. In this paper, we study the number r(S) of different configurations of non-crossing rays that can be obtained from a given point set S. We define the extremal values $$\begin{aligned} \overline{r}(n) = \max _{|S|=n} r(S)\quad \text { and } \quad \underline{r}(n) = \min _{|S|=n} r(S), \end{aligned}$$r¯(n)=max|S|=nr(S)andr̲(n)=min|S|=nr(S),and we prove that $$ \underline{r}(n) = \Omega ^* (2^n)$$r̲(n)=Ω∗(2n), $$ \underline{r}(n) = O^* (3.516^n)$$r̲(n)=O∗(3.516n) and that $$ \overline{r}(n) = \Theta ^* (4^n)$$r¯(n)=Θ∗(4n). We also consider the number of different ways, $$r^\gamma (S)$$rγ(S), in which a point set S can be connected to a simple curve $$\gamma $$γ using a set of non-crossing straight-line segments. We define and study $$\begin{aligned} \overline{r}^{\gamma }(n) = \max _{|S|=n} r^{\gamma }(S) \quad \text {and } \quad \underline{r}^{\gamma }(n) = \min _{|S|=n} r^{\gamma }(S), \end{aligned}$$r¯γ(n)=max|S|=nrγ(S)andr̲γ(n)=min|S|=nrγ(S),and we find these values for the following cases: When $$\gamma $$γ is a line and the points of S are in one of the halfplanes defined by $$\gamma $$γ, then $$ \underline{r}^\gamma (n) = \Theta ^* (2^n)$$r̲γ(n)=Θ∗(2n) and $$ \overline{r}^\gamma (n) = \Theta ^* (4^n)$$r¯γ(n)=Θ∗(4n). When $$\gamma $$γ is a convex curve enclosing S, then $$\overline{r}^\gamma (n) = O^* (16^n)$$r¯γ(n)=O∗(16n). If all the points of S belong to a convex closed curve $$\gamma $$γ, then $$\underline{r}^{\gamma }(n) = \overline{r}^{\gamma }(n) = \Theta ^* (5^n)$$r̲γ(n)=r¯γ(n)=Θ∗(5n).

[1]  M. Sharir,et al.  On the number of crossing-free matchings, (cycles, and partitions) , 2006, SODA 2006.

[2]  Jean Cardinal,et al.  Non-crossing matchings of points with geometric objects , 2013, Comput. Geom..

[3]  Ferran Hurtado,et al.  On the number of plane graphs , 2006, SODA '06.

[4]  Stefan Felsner,et al.  On the Recognition of Four-Directional Orthogonal Ray Graphs , 2013, MFCS.

[5]  Csaba D. Tóth,et al.  Bounds on the Maximum Multiplicity of Some Common Geometric Graphs , 2013, SIAM J. Discret. Math..

[6]  Herbert S. Wilf,et al.  Generating functionology , 1990 .

[7]  Micha Sharir,et al.  Counting Triangulations of Planar Point Sets , 2009, Electron. J. Comb..

[8]  Alfredo García Olaverri,et al.  The order of points on the second convex hull of a simple polygon , 1995, Discret. Comput. Geom..

[9]  A. Odlyzko Asymptotic enumeration methods , 1996 .

[10]  Philippe Flajolet,et al.  Analytic combinatorics of non-crossing configurations , 1999, Discret. Math..

[11]  D. Knuth,et al.  Mathematics for the Analysis of Algorithms , 1999 .

[12]  Raimund Seidel,et al.  A better upper bound on the number of triangulations of a planar point set , 2003, J. Comb. Theory, Ser. A.

[13]  Marc Noy,et al.  Lower bounds on the number of crossing-free subgraphs of KN , 2000, Comput. Geom..

[14]  Kevin Buchin,et al.  On the Number of Spanning Trees a Planar Graph Can Have , 2009, ESA.

[15]  Micha Sharir,et al.  On the number of crossing-free matchings, (cycles, and partitions) , 2006, SODA '06.

[16]  Jean Cardinal,et al.  The Clique Problem in Ray Intersection Graphs , 2013, Discret. Comput. Geom..

[17]  R. Stanley,et al.  Enumerative Combinatorics: Index , 1999 .

[18]  E. Szemerédi,et al.  Crossing-Free Subgraphs , 1982 .

[19]  Kenneth P. Bogart,et al.  Introductory Combinatorics , 1977 .

[20]  Satoshi Tayu,et al.  On orthogonal ray graphs , 2010, Discret. Appl. Math..

[21]  Jonathan L. Gross,et al.  Combinatorial Methods with Computer Applications , 2007 .

[22]  János Pach,et al.  Research problems in discrete geometry , 2005 .

[23]  Bettina Speckmann,et al.  On the Number of Pseudo-Triangulations of Certain Point Sets , 2003, CCCG.

[24]  Marc Noy,et al.  A lower bound on the number of triangulations of planar point sets , 2004, Comput. Geom..

[25]  Ferran Hurtado,et al.  On the Number of Plane Geometric Graphs , 2007, Graphs Comb..

[26]  Csaba D. Tóth,et al.  Counting Plane Graphs: Flippability and Its Applications , 2011, WADS.