A note on element-wise matrix sparsification via a matrix-valued Bernstein inequality
暂无分享,去创建一个
[1] Joel A. Tropp,et al. User-Friendly Tail Bounds for Sums of Random Matrices , 2010, Found. Comput. Math..
[2] David Gross,et al. Recovering Low-Rank Matrices From Few Coefficients in Any Basis , 2009, IEEE Transactions on Information Theory.
[3] Benjamin Recht,et al. A Simpler Approach to Matrix Completion , 2009, J. Mach. Learn. Res..
[4] Trac D. Tran,et al. Tensor sparsification via a bound on the spectral norm of random tensors , 2010, ArXiv.
[5] Emmanuel J. Candès,et al. The Power of Convex Relaxation: Near-Optimal Matrix Completion , 2009, IEEE Transactions on Information Theory.
[6] Nam H. Nguyen,et al. Matrix sparsification via the Khintchine inequality , 2010 .
[7] Alex Gittens,et al. Error Bounds for Random Matrix Approximation Schemes , 2009, 0911.4108.
[8] Emmanuel J. Candès,et al. Exact Matrix Completion via Convex Optimization , 2008, Found. Comput. Math..
[9] Alexandre d'Aspremont,et al. Subsampling algorithms for semidefinite programming , 2008, 0803.1990.
[10] Sanjeev Arora,et al. A Fast Random Sampling Algorithm for Sparsifying Matrices , 2006, APPROX-RANDOM.
[11] Petros Drineas,et al. Fast Monte Carlo Algorithms for Matrices I: Approximating Matrix Multiplication , 2006, SIAM J. Comput..
[12] Sanjeev Arora,et al. Fast algorithms for approximate semidefinite programming using the multiplicative weights update method , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).
[13] R. M. Dijkstra. Information Processing Letters , 2003 .
[14] Dimitris Achlioptas,et al. Fast computation of low rank matrix approximations , 2001, STOC '01.