A large deviation approach to some transportation cost inequalities
暂无分享,去创建一个
[1] I. N. Sanov. On the probability of large deviations of random variables , 1958 .
[2] C. Borell. The Brunn-Minkowski inequality in Gauss space , 1975 .
[3] I. Csiszár. $I$-Divergence Geometry of Probability Distributions and Minimization Problems , 1975 .
[4] V. V. Yurinskii. Exponential inequalities for sums of random vectors , 1976 .
[5] I. Csiszár. Sanov Property, Generalized $I$-Projection and a Conditional Limit Theorem , 1984 .
[6] Katalin Marton,et al. A simple proof of the blowing-up lemma , 1986, IEEE Trans. Inf. Theory.
[7] M. Talagrand. Transportation cost for Gaussian and other product measures , 1996 .
[8] K. Marton. Bounding $\bar{d}$-distance by informational divergence: a method to prove measure concentration , 1996 .
[9] Amir Dembo,et al. Large Deviations Techniques and Applications , 1998 .
[10] S. Rachev,et al. Mass transportation problems , 1998 .
[11] S. Bobkov,et al. Exponential Integrability and Transportation Cost Related to Logarithmic Sobolev Inequalities , 1999 .
[12] C. Villani,et al. Generalization of an Inequality by Talagrand and Links with the Logarithmic Sobolev Inequality , 2000 .
[13] M. Ledoux. The concentration of measure phenomenon , 2001 .
[14] S. Bobkov,et al. Hypercontractivity of Hamilton-Jacobi equations , 2001 .
[15] Christian Léonard,et al. An extension of Sanov's theorem: application to the Gibbs conditioning principle , 2002 .
[16] Large deviations of U-empirical measures in strong topologies and applications☆ , 2002 .
[17] C. Villani. Topics in Optimal Transportation , 2003 .
[18] G. Burton. TOPICS IN OPTIMAL TRANSPORTATION (Graduate Studies in Mathematics 58) By CÉDRIC VILLANI: 370 pp., US$59.00, ISBN 0-8218-3312-X (American Mathematical Society, Providence, RI, 2003) , 2004 .
[19] A. Guillin,et al. Transportation cost-information inequalities and applications to random dynamical systems and diffusions , 2004, math/0410172.
[20] Principe conditionnel de Gibbs pour des contraintes fines approchées et inégalités de transport , 2005 .
[21] C. Villani,et al. Quantitative Concentration Inequalities for Empirical Measures on Non-compact Spaces , 2005, math/0503123.
[22] C. Villani,et al. Weighted Csiszár-Kullback-Pinsker inequalities and applications to transportation inequalities , 2005 .
[23] F. Bolley. Applications du transport optimal à des problèmes de limites de champ moyen , 2005 .
[24] A SET OF LECTURE NOTES ON CONVEX OPTIMIZATION WITH SOME APPLICATIONS TO PROBABILITY THEORY INCOMPLETE DRAFT , 2006 .