Generalized modular framework for the synthesis of heat integrated distillation column sequences

Abstract The synthesis of simple and Heat Integrated distillation column sequences is a challenging problem of high economic importance due to its structural and physical complexities and to its economic impact on chemical industries. In this paper this synthesis problem is addressed through a novel systematic superstructure representation method extending the principles of the Generalized Modular Framework (Papalexandri and Pistikopoulos, 1996. A.I.Ch.E. Journal 42 (4), 1010–1032). The method proposes systematic structural and physical models addressing the problem's inherent complexities, generating considerably compact optimization problems while avoiding the use of simplifying assumptions. The method employed for ternary and quaternary non-azeotropic separations is demonstrated over illustrating case studies obtaining the most energy efficient distillation column sequences and Heat Integration schemes and generating substantial energy savings.

[1]  Efstratios N. Pistikopoulos,et al.  Modular representation synthesis framework for homogeneous azeotropic separation , 1999 .

[2]  E. G. Hohmann,et al.  A NEW APPROACH TO THE SYNTHESIS OF MULTICOMPONENT SEPARATION SCHEMES , 1982 .

[3]  C. Floudas,et al.  Synthesis of general distillation sequences : nonsharp separations , 1990 .

[4]  R. Reid,et al.  The Properties of Gases and Liquids , 1977 .

[5]  Ignacio E. Grossmann,et al.  Nonlinear disjunctive programming models for the synthesis of heat integrated distillation sequences , 1999 .

[6]  Ignacio E. Grossmann,et al.  Simultaneous optimization models for heat integration—II. Heat exchanger network synthesis , 1990 .

[7]  Ignacio E. Grossmann,et al.  Simultaneous optimization models for heat integration—I. Area and energy targeting and modeling of multi-stream exchangers , 1990 .

[8]  Efstratios N. Pistikopoulos,et al.  Generalized modular representation framework for process synthesis , 1996 .

[9]  James M. Douglas,et al.  Conceptual Design of Chemical Processes , 1988 .

[10]  Ignacio E. Grossmann,et al.  Systematic Methods of Chemical Process Design , 1997 .

[11]  Roger W. Thompson,et al.  Systematic synthesis of separation schemes , 1972 .

[12]  Miguel J. Bagajewicz,et al.  Mass/heat‐exchange network representation of distillation networks , 1992 .

[13]  Mark J. Andrecovich,et al.  An MILP formulation for heat‐integrated distillation sequence synthesis , 1985 .

[14]  C. Pantelides,et al.  Optimal design of thermally coupled distillation columns , 1999 .

[15]  Ignacio E. Grossmann,et al.  A rigorous disjunctive optimization model for simultaneous flowsheet optimization and heat integration , 1998 .

[16]  I. Grossmann,et al.  Disjunctive Programming Models for the Optimal Design of Distillation Columns and Separation Sequences , 2000 .

[17]  C. Floudas,et al.  A mixed-integer nonlinear programming formulation for the synthesis of heat-integrated distillation sequences , 1988 .

[18]  A. M. Geoffrion Generalized Benders decomposition , 1972 .

[19]  David Kendrick,et al.  GAMS, a user's guide , 1988, SGNM.

[20]  Ignacio E. Grossmann,et al.  Simultaneous optimization and heat integration of chemical processes , 1986 .

[21]  Christodoulos A. Floudas,et al.  APROS: Algorithmic Development Methodology for Discrete-Continuous Optimization Problems , 1989, Oper. Res..

[22]  Ignacio E. Grossmann,et al.  Optimal feed locations and number of trays for distillation columns with multiple feeds , 1993 .

[23]  I. Grossmann,et al.  Aggregated Models for Integrated Distillation Systems , 1999 .

[24]  Efstratios N. Pistikopoulos,et al.  Modular synthesis framework for combined separation/reaction systems , 2001 .

[25]  Rafiqul Gani,et al.  SEPARATION PROCESS DESIGN AND SYNTHESIS BASED ON THERMODYNAMIC INSIGHTS , 1995 .

[26]  Petros Proios,et al.  Generalized modular framework for distillation column synthesis , 2004 .

[27]  Edward M. B. Smith,et al.  On the optimal design of continuous processes , 1996 .

[28]  Rakesh Agrawal,et al.  Synthesis of multicomponent distillation column configurations , 2003 .

[29]  T. L. Wayburn,et al.  Multiple steady-state solutions for interlinked separation systems , 1986 .

[30]  Ignacio E. Grossmann,et al.  Integration of thermodynamic insights and MINLP optimization for the synthesis, design and analysis of process flowsheets , 1999 .

[31]  Ignacio E. Grossmann,et al.  Symbolic integration of logic in mixed-integer linear programming techniques for process synthesis , 1993 .

[32]  R. Raman,et al.  RELATION BETWEEN MILP MODELLING AND LOGICAL INFERENCE FOR CHEMICAL PROCESS SYNTHESIS , 1991 .

[33]  Christodoulos A. Floudas,et al.  Synthesis of distillation sequences with several multicomponent feed and product streams , 1988 .

[34]  Ignacio E. Grossmann,et al.  A structural optimization approach in process synthesis—I: Utility systems , 1983 .

[35]  I. Grossmann,et al.  A systematic modeling framework of superstructure optimization in process synthesis , 1999 .

[36]  Arthur W. Westerberg,et al.  Minimum utility usage in heat exchanger network synthesis : a transportation problem , 1983 .

[37]  Ignacio E. Grossmann,et al.  Simultaneous synthesis of distillation sequences in overall process schemes using an improved minlp approach , 1996 .

[38]  R. Raman,et al.  Modelling and computational techniques for logic based integer programming , 1994 .