Multiresolution-based direct trajectory optimization

In this paper we present a multiresolution-based approach for direct trajectory optimization. We transcribe the optimal control problem into a nonlinear programming (NLP) problem and solve the resulting NLP problem on an adaptive grid. The proposed algorithm automatically generates a grid to accurately capture the discontinuities and switchings in the state and control variables. The path constraints are handled with ease using the proposed technique without any additional computational complexity. The efficiency and accuracy of the proposed algorithm is demonstrated with the help of several examples.

[1]  Wolfgang Marquardt,et al.  Dynamic optimization using adaptive control vector parameterization , 2005, Comput. Chem. Eng..

[2]  The Method of Reflection for Solving the Time-Optimal Hamilton-Jacobi-Bellman Equation on the Interval Using Wavelets , 2005, Proceedings of the 2005 IEEE International Symposium on, Mediterrean Conference on Control and Automation Intelligent Control, 2005..

[3]  Wolfgang Dahmen,et al.  Grid refinement in multiscale dynamic optimization , 2000 .

[4]  J. Betts,et al.  Compensating for order variation in mesh refinement for direct transcription methods , 2000 .

[5]  I. Michael Ross,et al.  A Spectral Patching Method for Direct Trajectory Optimization , 2000 .

[6]  J. Butcher Implicit Runge-Kutta processes , 1964 .

[7]  J. Betts Survey of Numerical Methods for Trajectory Optimization , 1998 .

[8]  A solution of the time-optimal Hamilton-Jacobi-Bellman equation on the interval using wavelets , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[9]  Michael A. Saunders,et al.  User’s Guide For Snopt Version 6, A Fortran Package for Large-Scale Nonlinear Programming∗ , 2002 .

[10]  Panagiotis Tsiotras,et al.  Adaptive multiresolution mesh refinement for the solution of evolution PDEs , 2007, 2007 46th IEEE Conference on Decision and Control.

[11]  I. Michael Ross,et al.  Direct trajectory optimization by a Chebyshev pseudospectral method , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[12]  W. Dahmen,et al.  Iterative Algorithms for Multiscale State Estimation, Part 1: Concepts , 2001 .

[13]  Wolfgang Dahmen,et al.  Iterative Algorithms for Multiscale State Estimation, Part 2: Numerical Investigations , 2001 .

[14]  George M. Siouris,et al.  Applied Optimal Control: Optimization, Estimation, and Control , 1979, IEEE Transactions on Systems, Man, and Cybernetics.

[15]  T. Binder,et al.  Dynamic optimization using a wavelet based adaptive control vector parameterization strategy , 2000 .

[16]  Anil V. Rao,et al.  Practical Methods for Optimal Control Using Nonlinear Programming , 1987 .

[17]  J. Betts,et al.  MESH REFINEMENT IN DIRECT TRANSCRIPTION METHODS FOR OPTIMAL CONTROL , 1998 .

[18]  Gamal N. Elnagar,et al.  The pseudospectral Legendre method for discretizing optimal control problems , 1995, IEEE Trans. Autom. Control..

[19]  I. Michael Ross,et al.  Pseudospectral Knotting Methods for Solving Optimal Control Problems , 2004 .