The Mars Science Laboratory Curiosity rover Mastcam instruments: Preflight and in‐flight calibration, validation, and data archiving

The NASA Curiosity rover Mast Camera (Mastcam) system is a pair of fixed-focal length, multispectral, color CCD imagers mounted ~2 m above the surface on the rover’s remote sensing mast, along with associated electronics and an onboard calibration target. The left Mastcam (M-34) has a 34 mm focal length, an instantaneous field of view (IFOV) of 0.22 mrad, and a FOV of 20° × 15° over the full 1648 × 1200 pixel span of its Kodak KAI-2020 CCD. The right Mastcam (M-100) has a 100 mm focal length, an IFOV of 0.074 mrad, and a FOV of 6.8° × 5.1° using the same detector. The cameras are separated by 24.2 cm on the mast, allowing stereo images to be obtained at the resolution of the M-34 camera. Each camera has an eight-position filter wheel, enabling it to take Bayer pattern red, green, and blue (RGB) “true color” images, multispectral images in nine additional bands spanning ~400–1100 nm, and images of the Sun in two colors through neutral density-coated filters. An associated Digital Electronics Assembly provides command and data interfaces to the rover, 8 Gb of image storage per camera, 11 bit to 8 bit companding, JPEG compression, and acquisition of high-definition video. Here we describe the preflight and in-flight calibration of Mastcam images, the ways that they are being archived in the NASA Planetary Data System, and the ways that calibration refinements are being developed as the investigation progresses on Mars. We also provide some examples of data sets and analyses that help to validate the accuracy and precision of the calibration. Plain Language Summary We describe the calibration and archiving of the images being obtained from the Mastcam multispectral, stereoscopic imaging system on board the NASA Curiosity Mars rover. Calibration is critical to detailed scientific analysis of instrumental data, and in this paper we not only describe the details of the calibration process and the steps in our resulting data calibration pipeline but also present some examples of the kinds of scientific analyses and discoveries that this calibration has enabled.

[1]  M. Klimesh,et al.  Mars Exploration Rover engineering cameras , 2003 .

[2]  K. Stamnes,et al.  Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. , 1988, Applied optics.

[3]  A. Yingst,et al.  A Habitable Fluvio-Lacustrine Environment at Yellowknife Bay, Gale Crater, Mars , 2014, Science.

[4]  Yoram Yakimovsky,et al.  A system for extracting three-dimensional measurements from a stereo pair of TV cameras , 1976 .

[5]  G. Ritchie,et al.  Radiation in the Atmosphere , 2017 .

[6]  Per Nornberg,et al.  Magnetic Properties Experiments on the Mars Exploration Rover mission , 2003 .

[7]  Lei Zhang,et al.  Color demosaicking via directional linear minimum mean square-error estimation , 2005, IEEE Transactions on Image Processing.

[8]  Peter D. Burns,et al.  Slanted-Edge MTF for Digital Camera and Scanner Analysis , 2000, PICS.

[9]  Trevor G. Graff,et al.  Athena Instrument Validation and Data Library Development for the Mars Exploration Rover (MER) Mission , 2002 .

[10]  Henrique S. Malvar,et al.  High-quality linear interpolation for demosaicing of Bayer-patterned color images , 2004, 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[11]  Reg G. Willson,et al.  The Mars Science Laboratory (MSL) Mast-mounted Cameras (Mastcams) Flight Instruments , 2010 .

[12]  Reg G. Willson,et al.  Curiosity’s Mars Hand Lens Imager (MAHLI) Investigation , 2012 .

[13]  Joan L. Mitchell,et al.  JPEG: Still Image Data Compression Standard , 1992 .

[14]  R. Anderson,et al.  Mars Science Laboratory Mission and Science Investigation , 2012 .

[15]  Kaichang Di,et al.  CAHVOR camera model and its photogrammetric conversion for planetary applications , 2004 .

[16]  R. J. Reid,et al.  Imager for Mars Pathfinder (IMP) image calibration , 1999 .

[17]  Reg G. Willson,et al.  Supplement (.zip file to download) to PRE-PRINT Edgett et al. - Curiosity’s robotic arm-mounted Mars Hand Lens Imager (MAHLI): Characterization and calibration status , 2015 .

[18]  Raymond E. Arvidson,et al.  Radiative transfer modeling of dust-coated Pancam calibration target materials: Laboratory visible/near-infrared spectrogoniometry , 2006 .

[19]  J. Janesick,et al.  Charge-Coupled-Device Charge-Collection Efficiency And The Photon-Transfer Technique , 1987 .

[20]  Andrea Faber,et al.  Introduction To Modern Photogrammetry , 2016 .

[21]  Justin N. Maki,et al.  The Mars Science Laboratory Engineering Cameras , 2012 .

[22]  Michal C Malin,et al.  The Mars Science Laboratory (MSL) Mast cameras and Descent imager: Investigation and instrument descriptions , 2017, Earth and space science.

[23]  Jeffrey R. Johnson,et al.  Dust deposition on the Mars Exploration Rover Panoramic Camera (Pancam) calibration targets , 2007 .

[24]  Jeffrey R. Johnson,et al.  Dust deposition on the decks of the Mars Exploration Rovers: 10 years of dust dynamics on the Panoramic Camera calibration targets , 2015, Earth and space science.

[25]  Jeffrey R. Johnson,et al.  Silica-rich deposits and hydrated minerals at Gusev Crater, Mars: Vis-NIR spectral characterization and regional mapping , 2010 .

[26]  F. Tony Ghaemi,et al.  Design and fabrication of lenses for the color science cameras aboard the Mars Science Laboratory rover , 2009 .

[27]  M. Lemmon The Mars Science Laboratory Optical Depth Record , 2014 .

[28]  D. Gennery Least-Squares Camera Calibration Including Lens Distortion and Automatic Editing of Calibration Points , 2001 .

[29]  Donald B. Gennery,et al.  Generalized Camera Calibration Including Fish-Eye Lenses , 2006, International Journal of Computer Vision.

[30]  Elor Yotam,et al.  MTF for Bayer pattern color detector , 2007, SPIE Defense + Commercial Sensing.

[31]  N. Bridges,et al.  The ChemCam Instrument Suite on the Mars Science Laboratory (MSL) Rover: Body Unit and Combined System Tests , 2012 .

[32]  Raymond E. Arvidson,et al.  Wavelength dependence of dust aerosol single scattering albedo as observed by the Compact Reconnaissance Imaging Spectrometer , 2009 .

[33]  R. G. Deen,et al.  Pointing Correction for Mars Surface Mosaics , 2015 .

[34]  Miles J. Johnson,et al.  In‐flight calibration and performance of the Mars Exploration Rover Panoramic Camera (Pancam) instruments , 2006 .

[35]  Tony Greicius NASA Rover Gets Movie as a Mars Moon Passes Another , 2013 .

[36]  Mark T. Lemmon,et al.  Properties of dust in the Martian atmosphere from the Imager on Mars Pathfinder , 1999 .

[37]  Jeffrey R. Johnson,et al.  INITIAL MULTISPECTRAL IMAGING RESULTS FROM THE MARS SCIENCE LABORATORY MASTCAM INVESTIGATION AT THE GALE CRATER FIELD SITE. J.F. Bell III , 2013 .

[38]  Abigail A. Fraeman,et al.  Visible to near-infrared MSL/Mastcam multispectral imaging: Initial results from select high-interest science targets within Gale Crater, Mars , 2017 .

[39]  J F Bell,et al.  Magnetic Properties Experiments on the Mars Exploration Rover Spirit at Gusev Crater , 2004, Science.

[40]  J. Bell,et al.  Dust aerosol, clouds, and the atmospheric optical depth record over 5 Mars years of the Mars Exploration Rover mission , 2014, 1403.4234.

[41]  R. C. Wiens,et al.  Martian Fluvial Conglomerates at Gale Crater , 2013, Science.

[42]  L. Colina,et al.  The 0.12-2.5 micron Absolute Flux Distribution of the Sun for Comparison With Solar Analog Stars , 1996 .

[43]  B. Hapke Theory of reflectance and emittance spectroscopy , 1993 .

[44]  S. T. Elliot,et al.  Mars Exploration Rover Athena Panoramic Camera (Pancam) investigation , 2003 .