Arrays of coupled chemical oscillators

Oscillating chemical reactions result from complex periodic changes in the concentration of the reactants. In spatially ordered ensembles of candle flame oscillators the fluctuations in the ratio of oxygen atoms with respect to that of carbon, hydrogen and nitrogen produces an oscillation in the visible part of the flame related to the energy released per unit mass of oxygen. Thus, the products of the reaction vary in concentration as a function of time, giving rise to an oscillation in the amount of soot and radiative emission. Synchronisation of interacting dynamical sub-systems occurs as arrays of flames that act as master and slave oscillators, with groups of candles numbering greater than two, creating a synchronised motion in three-dimensions. In a ring of candles the visible parts of each flame move together, up and down and back and forth, in a manner that appears like a “worship”. Here this effect is shown for rings of flames which collectively empower a central flame to pulse to greater heights. In contrast, situations where the central flames are suppressed are also found. The phenomena leads to in-phase synchronised states emerging between periods of anti-phase synchronisation for arrays with different columnar sizes of candle and positioning.

[1]  R. M. Fristrom,et al.  Flames, their structure, radiation and temperature , 1960 .

[2]  Epstein,et al.  Coupled chaotic chemical oscillators. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[3]  Synchronization of oscillatory chemiluminescence with pulsed light irradiation , 2013 .

[4]  Mark A. Adams,et al.  Mega-fires, inquiries and politics in the eucalypt forests of Victoria, south-eastern Australia , 2013 .

[5]  M. Matalon Intrinsic Flame Instabilities in Premixed and Nonpremixed Combustion , 2007 .

[6]  Kenneth Showalter,et al.  Chimera States in populations of nonlocally coupled chemical oscillators. , 2013, Physical review letters.

[7]  Wei-min Liu,et al.  Candle soot as a supercapacitor electrode material , 2014 .

[8]  T. Maxworthy The flickering candle: transition to a global oscillation in a thermal plume , 1999, Journal of Fluid Mechanics.

[9]  K. Robbins,et al.  Deterministic Chaos in Laminar Premixed Flames: Experimental Classification of Chaotic Dynamics , 1993 .

[10]  M. El-Hamdi,et al.  The characteristics of four ratcheting states in cellular flames. , 2009, Chaos.

[11]  M. El-Hamdi,et al.  Rotating and Modulated Rotating States of Cellular Flames , 1994 .

[12]  G. H. Markstein,et al.  Cellular flame structure and vibratory flame movement in N-butane-methane mixtures , 1953 .

[13]  John J. R. Williams,et al.  Vortex dynamics in spatio-temporal development of reacting plumes , 2002 .

[14]  L. Landau,et al.  On the Theory of Slow Combustion , 1988 .

[15]  P J Padley,et al.  Flames: Their Structure, Radiation and Temperature , 1971 .

[16]  Peter Blomgren,et al.  Hopping behavior in the Kuramoto-Sivashinsky equation. , 2005, Chaos.

[17]  M. El-Hamdi,et al.  Four Types of Chaotic Dynamics in Cellular Flames , 1994 .

[18]  J. van der Plicht,et al.  Nanodiamonds and wildfire evidence in the Usselo horizon postdate the Allerød-Younger Dryas boundary , 2012, Proceedings of the National Academy of Sciences.

[19]  G. H. Markstein,et al.  Instability phenomena in combustion waves , 1953 .

[20]  Mehdi Dehghan,et al.  Numerical solutions of the generalized Kuramoto–Sivashinsky equation using B-spline functions , 2012 .

[21]  J. Buckmaster Stability of the Porous Plug Burner Flame , 1983 .

[22]  M. El-Hamdi,et al.  Chaotic dynamics near the extinction limit of a premixed flame on a porous plug burner , 1994 .

[23]  A. Balanov,et al.  Synchronization: From Simple to Complex , 2008 .

[24]  Gregory I. Sivashinsky,et al.  Diffusional-Thermal Theory of Cellular Flames , 1977 .

[25]  Journal of the Optical Society of America , 1950, Nature.

[26]  M. El-Hamdi,et al.  Experimental Observation of Ordered States of Cellular Flames , 1994 .

[27]  S. Kadowaki The body-force effect on the cell formation of premixed flames , 2001 .

[28]  Etsuro Yokoyama,et al.  Oscillation and synchronization in the combustion of candles. , 2009, The journal of physical chemistry. A.

[29]  J. M. Jones,et al.  Low-frequency diffusion flame oscillations , 1975 .

[30]  Bernard J. Matkowsky,et al.  Localized Flickering Cellular Flames , 1998, SIAM J. Appl. Math..

[31]  Gemunu H. Gunaratne,et al.  Karhunen-Loève analysis of spatiotemporal flame patterns , 1998 .

[32]  Irving R. Epstein,et al.  Coupled chemical oscillators and emergent system properties. , 2014, Chemical communications.

[33]  Z. Su,et al.  New insight into the soot nanoparticles in a candle flame. , 2011, Chemical communications.

[34]  Michael Gorman,et al.  Modal decomposition of hopping states in cellular flames. , 1999, Chaos.

[35]  P. Atkins Atoms, Electrons and Change , 1991 .

[36]  M. El-Hamdi,et al.  Hopping Motion in Ordered States of Cellular Flames , 1994 .

[37]  P. H. Thomas,et al.  Buoyant diffusion flames , 1960 .

[38]  M. Faraday The chemical history of a candle , 2002 .

[39]  Robbins,et al.  Ratcheting motion of concentric rings in cellular flames. , 1996, Physical review letters.

[40]  P. Goldberg,et al.  Microstratigraphic evidence of in situ fire in the Acheulean strata of Wonderwerk Cave, Northern Cape province, South Africa , 2012, Proceedings of the National Academy of Sciences.

[41]  G. Plass,et al.  Emissivity of Dispersed Carbon Particles , 1960 .