Quadratic covariance estimation and equivalence of predictions

This article illustrates the use of linear and nonlinear regression models to obtain quadratic estimates of covariance parameters. These models lead to new insights into the motivation behind estimation methods, the relationships between different methods, and the relationship of covariance estimation to prediction. In particular, we derive the standard estimating equations for minimum norm quadratic unbiased translation invariant estimates (MINQUEs) from an appropriate linear model. Connections between the linear model, minimum variance quadratic unbiased translation invariant estimates (MIVQUEs), and MINQUEs are examined and we provide a minimum norm justification for the use of one-step normal theory maximum likelihood estimates. A nonlinear regression model is used to define MINQUEs for nonlinear covariance structures and obtain REML estimates. Finally, the equivalence of predictions under various models is examined when covariance parameters are estimated. In particular, we establish that when using MINQUE, iterative MINQUE, or restricted maximum likelihood (REML) estimates, the choice between a stationary covariance function and an intrinsically stationary semivariogram is irrelevant to predictions and estimated prediction variances.

[1]  Peter K. Kitanidis,et al.  Minimum-variance unbiased quadratic estimation of covariances of regionalized variables , 1985 .

[2]  Ronald Christensen Plane Answers to Complex Questions , 1987 .

[3]  D. Ruppert,et al.  Transformation and Weighting in Regression , 1988 .

[4]  Justus Seely,et al.  Quadratic Subspaces and Completeness , 1971 .

[5]  J. Seely Linear Spaces and Unbiased Estimation , 1970 .

[6]  Friedrich Pukelsheim,et al.  Estimating variance components in linear models , 1976 .

[7]  K. Mardia,et al.  Maximum likelihood estimation of models for residual covariance in spatial regression , 1984 .

[8]  C. R. Rao,et al.  Linear Statistical Inference and its Applications , 1968 .

[9]  P. Kitanidis,et al.  Maximum likelihood parameter estimation of hydrologic spatial processes by the Gauss-Newton method , 1985 .

[10]  J. Seely Linear Spaces and Unbiased Estimation--Application to the Mixed Linear Model , 1970 .

[11]  Calyampudi R. Rao,et al.  Linear Statistical Inference and Its Applications. , 1975 .

[12]  Peter K. Kitanidis,et al.  Statistical estimation of polynomial generalized covariance functions and hydrologic applications , 1983 .

[13]  Ronald Christensen,et al.  The equivalence of predictions from universal kriging and intrinsic random-function kriging , 1990 .

[14]  Angelika van der Linde,et al.  On least squares estimation of generalized covariance functions , 1993 .

[15]  K. Mardia Minimum norm quadratic estimation of components of spatial covariance , 1985 .

[16]  Minimum norm quadratic estimation of components of spatial covariance , 1985 .

[17]  Noel A Cressie,et al.  Statistics for Spatial Data. , 1992 .

[18]  Noel A Cressie,et al.  On the stability of the geostatistical method , 1992 .